曲線x3-6x2-3y-1=0在點(1,-2)處的切線方程為________________.

3x+y-1=0 

解析:本題考查利用導數(shù)求曲線的切線方程;根據(jù)意知y=,故=x2-4x,故切線的斜率即為|x=1=-3,從而切線方程可得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-6x2+11x,其圖象記為曲線C.
(1)求曲線C在點A(3,f(3))處的切線方程l;
(2)記曲線C與l的另一個交點為B(x2,f(x2)),線段AB與曲線C所圍成的封閉圖形的面積為S,求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源:重慶市期末題 題型:解答題

已知函數(shù)f(x)=x3﹣6x2+11x,其圖象記為曲線C.
(1)求曲線C在點A(3,f(3))處的切線方程l;
(2)記曲線C與l的另一個交點為B(x2,f(x2)),線段AB與曲線C所圍成的封閉圖形的面積為S,求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市名校聯(lián)盟高二(下)聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x3-6x2+11x,其圖象記為曲線C.
(1)求曲線C在點A(3,f(3))處的切線方程l;
(2)記曲線C與l的另一個交點為B(x2,f(x2)),線段AB與曲線C所圍成的封閉圖形的面積為S,求S的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省高三8月月考理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習冊答案