【題目】直線平面,垂足是,正四面體的棱長為,點在平面上運(yùn)動,點在直線上運(yùn)動,則點到直線的距離的取值范圍是_________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時間(單位:小時)
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”.
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國時期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若無窮數(shù)列單調(diào)遞增,則數(shù)列的極限存在
B.數(shù)列的一個極限值為0
C.若存在常數(shù),使得恒成立,則無窮數(shù)列的極限存在
D.若無窮數(shù)列的極限存在,則存在常數(shù),使得恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,且.
(1)求角的大小;
(2)設(shè)數(shù)列滿足,前項和為,若,求的值.
【答案】(1);(2)或.
【解析】試題分析:
(1)由題意結(jié)合三角形內(nèi)角和為可得.由余弦定理可得,,結(jié)合勾股定理可知為直角三角形,,.
(2)結(jié)合(1)中的結(jié)論可得 .則 ,據(jù)此可得關(guān)于實數(shù)k的方程,解方程可得,則或.
試題解析:
(1)由已知,又,所以.又由,
所以,所以,
所以為直角三角形,,.
(2) .
所以 ,由,得
,所以,所以,所以或.
【題型】解答題
【結(jié)束】
18
【題目】已知點是平行四邊形所在平面外一點,如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在年的自主招生考試成績中隨機(jī)抽取名學(xué)生的筆試成績,按成績分組:第組,第組,第組,第組,第組得到的頻率分布直方圖如圖所示
分別求第組的頻率;
若該校決定在第組中用分層抽樣的方法抽取名學(xué)生進(jìn)入第二輪面試,
已知學(xué)生甲和學(xué)生乙的成績均在第組,求學(xué)生甲和學(xué)生乙同時進(jìn)入第二輪面試的概率;
根據(jù)直方圖試估計這名學(xué)生成績的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在高二年級學(xué)生中,對自然科學(xué)類、社會科學(xué)類校本選修課程的選課意向進(jìn)行調(diào)查.現(xiàn)從高二年級學(xué)生中隨機(jī)抽取180名學(xué)生,其中男生105名;在這180名學(xué)生中選擇社會科學(xué)類的男生、女生均為45名.
(1)根據(jù)抽取的180名學(xué)生的調(diào)查結(jié)果,完成下面的2×2列聯(lián)表.
(2)判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為科類的選擇與性別有關(guān)?
選擇自然科學(xué)類 | 選擇社會科學(xué)類 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式:,其中.
P(K2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱底面,,,,外接球的球心為,點是側(cè)棱上的一個動點.有下列判斷:①直線與直線是異面直線;②一定不垂直于; ③三棱錐的體積為定值;④的最小值為.其中正確的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,是的中點,將沿折起得到圖(二),點為棱上的動點.
(1)求證:平面平面;
(2)若,二面角為,點為中點,求二面角余弦值的平方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com