已知函數(shù)y=f(x)的定義域是[a,b],當(dāng)xÎ[a,c]時(shí),f(x)是單調(diào)增函數(shù);當(dāng)xÎ [c,b]時(shí),f(x)是單調(diào)減函數(shù).試證明f(x)在x=c時(shí)取最大值.

答案:略
解析:

證明:因?yàn)楫?dāng)xÎ[a,c]時(shí),f(x)是單調(diào)增函數(shù),所以對(duì)于任意xÎ[a,c],都有f(x)f(c);

又因?yàn)楫?dāng)xÎ[c,b]時(shí),f(x)是單調(diào)減函數(shù),所以對(duì)于任意xÎ[c,b],都有f(x)f(c)

因此,對(duì)于任意xÎ[ab]都有f(x)f(c),即f(x)x=c時(shí),取得最大值.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=( 。
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說(shuō)明為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關(guān)系為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時(shí)的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個(gè)為真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案