雙曲線 
x2
a2
-
y2
b2
=1的左右焦點分別為F1﹑F2,在雙曲線上存在點P,滿足|PF1|=5|PF2|.則此雙曲線的離心率e的最大值為  ( 。
A、
4
3
B、
3
2
C、
5
3
D、2
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線的定義及其離心率計算公式、三角形的三邊大小關(guān)系即可得出.
解答: 解:根據(jù)雙曲線的定義,得|PF1|-|PF2|=4|PF2|=2a,
∴|PF2|=
1
2
a,
根據(jù)題意,點P在雙曲線的右支上,
∴|PF2|=
1
2
a≥c-a,
c
a
3
2
,
故選:B.
點評:本題考查了雙曲線的定義與標準方程和幾何性質(zhì)的應用問題,是基礎題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

π
4
-
π
4
sin2xdx
=( 。
A、0B、1C、2D、π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某地區(qū)甲、乙、丙三所學校高三數(shù)學模擬考試的成績,采取分層抽樣方法從甲校的1260份試卷、乙校的720份試卷、丙校的900份試卷中進行抽樣調(diào)研.如果從丙校的900份試卷中抽取了50份試卷,那么這次調(diào)研一共抽查的試卷份數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點P(1,
2
2
),且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線l:mx+ny+
1
3
n=0(m,n∈R)交橢圓C于A、B兩點,求證:以AB為直徑的動圓恒經(jīng)過定點(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=60°,且∠A的平分線AD將BC分成兩段之比為BD:DC=2:1,又AD=4
3

(1)求三邊長;
(2)求∠C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在三棱柱ABC-A1B1C1中,底面ABC是邊長為2的正三角形,側(cè)棱長為3,且側(cè)棱AA1⊥面ABC,點D是BC的中點,求證:平面BB1C1C丄平面ADC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos(
13
3
π)的值(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中正確的是( 。
A、三角形的內(nèi)角是第一象限角或第二象限角
B、第一象限角是銳角
C、第一象限角不是銳角
D、角α是第四象限角則有2kπ-
π
2
<α<2kπ(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直線λ與半徑為1的圓F相切于C.動點P到直線λ的距離為d,已知
|PF|
d
=
2
2
,且
2
3
≤d≤
3
2

(Ⅰ)建立適當?shù)闹苯亲鴺讼,求點P運動形成的軌跡方程;
(Ⅱ)若點G滿足
GF
=2
FC
,點M滿足
MP
=3
PF
且線段MG的垂直平分線經(jīng)過P,求△PGF的面積.

查看答案和解析>>

同步練習冊答案