(本題滿分12分)

如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,于D,PD與AO的延長(zhǎng)線相交于點(diǎn)E,連接CE并延長(zhǎng)交圓O于點(diǎn)F,連接AF。

(1)求證:B,C,E,D四點(diǎn)共圓;

(2)當(dāng)AB=12,時(shí),求圓O的半徑.

 

【答案】

(1)見(jiàn)解析;(2)圓O的半徑

【解析】本試題主要是考查了幾何證明的運(yùn)用。圓內(nèi)的性質(zhì)和三角形的相似的運(yùn)用。

(1)由切割線定理

由已知易得,所以

(2)由(1)知

再結(jié)合平行的性質(zhì)的得到,然后結(jié)合勾股定理得到結(jié)論。

解:(1)由切割線定理

由已知易得,所以

所以=為公共角,所以,…………3分

所以,

所以,B,C,E,D四點(diǎn)共圓              ……………………………………….4分

(2)作,

由(1)知

,

中,

  所以,圓O的半徑。             ……………………………….12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案