【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),其中A,B兩點(diǎn)的橫坐標(biāo)分別為﹣1和﹣4,且拋物線過原點(diǎn).

(1)求拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)若點(diǎn)P是線段AB上不與A,B重合的動(dòng)點(diǎn),過點(diǎn)P作PE∥OA,與拋物線第三象限的部分交于一點(diǎn)E,過點(diǎn)E作EG⊥x軸于點(diǎn)G,交AB于點(diǎn)F,若S△BGF=3S△EFP , 求 的值.

【答案】
(1)解:∵A,B兩點(diǎn)在直線y=﹣x﹣4上,且橫坐標(biāo)分別為﹣1、﹣4,

∴A(﹣1,﹣3),B(﹣4,0),

∵拋物線過原點(diǎn),

∴c=0,

把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得 ,解得

∴拋物線解析式為y=x2+4x


(2)解:∵△ABC為等腰三角形,

∴有AB=AC、AB=BC和CA=CB三種情況,

①當(dāng)AB=AC時(shí),當(dāng)點(diǎn)C在y軸上,設(shè)C(0,y),

則AB= =3 ,AC= ,

∴3 = ,解得y=﹣3﹣ 或y=﹣3+ ,

∴C(0,﹣3﹣ )或(0,﹣3﹣ );

當(dāng)點(diǎn)C在x軸上時(shí),設(shè)C(x,0),則AC=

=3 ,解得x=﹣4或x=2,當(dāng)x=﹣4時(shí),B、C重合,舍去,

∴C(2,0);

②當(dāng)AB=BC時(shí),當(dāng)點(diǎn)C在x軸上,設(shè)C(x,0),

則有AB=3 ,BC=|x+4|,

∴|x+4|=3 ,解得x=﹣4+3 或x=﹣4﹣3

∴C(﹣4+3 ,0)或(﹣4﹣3 ,0);

當(dāng)點(diǎn)C在y軸上,設(shè)C(0,y),則BC= ,

=3 ,解得y= 或y=﹣ ,

∴C(0, )或(0,﹣ );

③當(dāng)CB=CA時(shí),則點(diǎn)C在線段AB的垂直平分線與y軸的交點(diǎn)處,

∵A(﹣1,﹣3),B(﹣4,0),

∴線段AB的中點(diǎn)坐標(biāo)為(﹣ ,﹣ ),

設(shè)線段AB的垂直平分線的解析式為y=x+d,

∴﹣ =﹣ +d,解得d=1,

∴線段AB的垂直平分線的解析式為y=x+1,

令x=0可得y=1,令y=0可求得x=﹣1,

∴C(﹣1,0)或(0,1);

綜上可知存在滿足條件的點(diǎn)C,其坐標(biāo)為(0,﹣3﹣ )或(0,﹣3﹣ )或(﹣4+3 ,0)或(﹣4﹣3 ,0)或(﹣1,0)或(0,1)或(2,0)或(0, )或(0,﹣


(3)解:過點(diǎn)P作PQ⊥EF,交EF于點(diǎn)Q,過點(diǎn)A作AD⊥x軸于點(diǎn)D,

∵PE∥OA,GE∥AD,

∴∠OAD=∠PEG,∠PQE=∠ODA=90°,

∴△PQE∽△ODA,

= =3,即EQ=3PQ,

∵直線AB的解析式為y=﹣x﹣4,

∴∠ABO=45°=∠PFQ,

∴PQ=FQ,BG=GF,

∴EF=4PQ,

∴GE=GF+4PQ,

∵S△BGF=3S△EFP

GF2=3× 4PQ2

∴GF=2 PQ,

= =


【解析】(1)由直線解析式可分別求得A、B兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)當(dāng)AB=AC時(shí),點(diǎn)C在y軸上,可表示出AC的長(zhǎng)度,可求得其坐標(biāo);當(dāng)AB=BC時(shí),可知點(diǎn)C在x軸上,可表示出BC的長(zhǎng)度,可求得其坐標(biāo);當(dāng)AC=BC時(shí)點(diǎn)C在線段AB的垂直平分線與坐標(biāo)軸的交點(diǎn)處,可求得線段AB的中點(diǎn)的坐標(biāo),可求得垂直平分線的解析式,則可求得C點(diǎn)坐標(biāo);(3)過點(diǎn)P作PQ⊥EF,交EF于點(diǎn)Q,過點(diǎn)A作AD⊥x軸于點(diǎn)D,可證明△PQE∽△ODA,可求得EQ=3PQ,再結(jié)合F點(diǎn)在直線AB上,可求得FQ=PQ,則可求得EF=4PQ,利用三角形的面積的關(guān)系可求得GF與PQ的關(guān)系,則可求得比值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的性質(zhì)的相關(guān)知識(shí),掌握對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E、點(diǎn)F分別是等邊△ABC的邊ABAC上的點(diǎn),且BE=AFCE、BF 相交于點(diǎn)P,則∠BPC的大小為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績(jī)x/分

頻數(shù)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

n

80≤x<90

m

0.35

90≤x≤100

50

0.25

請(qǐng)根據(jù)所給信息,解答下列問題:
(1)m= , n=;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)會(huì)落在分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在創(chuàng)建全國(guó)文明城市過程中,決定購買A,B兩種樹苗對(duì)某路段道路進(jìn)行綠化改造,已知購買A種樹苗8棵,B種樹苗3棵,需要950元;若購買A種樹苗5棵,B種樹苗6棵,則需要800元.
(1)求購買A,B兩種樹苗每棵各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購進(jìn)A種樹苗不能少于50棵,且用于購買這兩種樹苗的資金不能超過7650元,若購進(jìn)這兩種樹苗共100棵,則有哪幾種購買方案?
(3)某包工隊(duì)承包種植任務(wù),若種好一棵A種樹苗可獲工錢30元,種好一棵B種樹苗可獲工錢20元,在第(2)問的各種購買方案中,種好這100棵樹苗,哪一種購買方案所付的種植工錢最少?最少工錢是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).

(1)當(dāng)﹣2x3時(shí),求y的取值范圍;

(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑是4,圓周角∠C=60°,點(diǎn)E時(shí)直徑AB延長(zhǎng)線上一點(diǎn),且∠DEB=30°,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一架長(zhǎng)2.5m的梯子斜靠在豎直的墻上,這時(shí)梯足到墻的底端距離為0.7m,若梯子頂端下滑0.4m,則梯足將向外移

A、0.6mB、0.7m C、0.8mD、0.9m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)MO,N對(duì)應(yīng)的數(shù)分別為﹣2,0,4,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x

1)如果點(diǎn)P到點(diǎn)M點(diǎn)N的距離相等,則x   

2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是10?若存在,求出x的值;若不存在,請(qǐng)說明理由.

3)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,長(zhǎng)方形ABCD陽光小區(qū)內(nèi)一塊空地,已知AB=(2a+6b)米,BC=(8a+4b)米.

1)該長(zhǎng)方形ABCD的面積是多少平方米?

2)若EAB邊的中點(diǎn),DFBC,現(xiàn)打算在陰影部分種植一片草坪,這片草坪的面積是多少平方米?

查看答案和解析>>

同步練習(xí)冊(cè)答案