【題目】一架長(zhǎng)2.5m的梯子斜靠在豎直的墻上,這時(shí)梯足到墻的底端距離為0.7m,若梯子頂端下滑0.4m,則梯足將向外移

A、0.6mB、0.7m C、0.8mD、0.9m

【答案】C

【解析】如下圖所示:AB相當(dāng)于梯子,ABC是梯子和墻面、地面形成的直角三角形,EFC是下滑后的形狀,C=90°:AB=EF=2.5m,CB=0.7m,AE=0.4m,BF是梯腳移動(dòng)的距離RtACB,由勾股定理可得:AB2=AC2+BC2,

AC==2.4mEC=AC-AE=2.4-0.4=2m,

在RtECF中,由勾股定理可得:EF2=EC2+CF2,CF==1.5m,

BF=CF-CB=1.5-0.7=0.8m,即:梯腳移動(dòng)的距離為0.8m.故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。

1)如圖,在ABC中,AC=BC,∠ACB=90°,直線l過點(diǎn)C,分別過AB兩點(diǎn)作ADl于點(diǎn)D,作BEl于點(diǎn)E.求證:DE=AD+BE.

2)如圖,已知RtABC,∠C=90°.用尺規(guī)作圖法作出ABC的角平分線AD;(不寫作法,保留作圖痕跡)

3)若AB=10,CD=3,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】釣魚島自古就是中國(guó)的領(lǐng)土,中國(guó)有關(guān)部門已對(duì)釣魚島及其附屬島嶼開展常態(tài)化監(jiān)視監(jiān)測(cè).一日,中國(guó)一艘海監(jiān)船從A點(diǎn)沿正北方向巡航,其航線距釣魚島(設(shè)M,N為該島的東西兩端點(diǎn))最近距離為14.4km(即MC=14.4km).在A點(diǎn)測(cè)得島嶼的西端點(diǎn)M在點(diǎn)A的北偏東42°方向;航行4km后到達(dá)B點(diǎn),測(cè)得島嶼的東端點(diǎn)N在點(diǎn)B的北偏東56°方向,(其中N,M,C在同一條直線上),求釣魚島東西兩端點(diǎn)MN之間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),其中A,B兩點(diǎn)的橫坐標(biāo)分別為﹣1和﹣4,且拋物線過原點(diǎn).

(1)求拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)若點(diǎn)P是線段AB上不與A,B重合的動(dòng)點(diǎn),過點(diǎn)P作PE∥OA,與拋物線第三象限的部分交于一點(diǎn)E,過點(diǎn)E作EG⊥x軸于點(diǎn)G,交AB于點(diǎn)F,若S△BGF=3S△EFP , 求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車的騎車時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)如果騎自行車的平均速度為12km/h,請(qǐng)估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,在所給網(wǎng)格中按下列要求畫出圖形:

1)(I)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn))上,畫一條線段AB,長(zhǎng)度為,且點(diǎn)B在格點(diǎn)上; II)以上題中所畫線段AB為一邊,另外兩條邊長(zhǎng)分別是32,畫一個(gè)三角形ABC,使點(diǎn)C在格點(diǎn)上(只需畫出符合條件的一個(gè)三角形);

2)所畫的三角形ABCAB邊上高線長(zhǎng).(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求回答問題:
(1)已知:等邊△ABC的邊長(zhǎng)為4,點(diǎn)P在線段AB上,點(diǎn)D在線段AC上,且△PDE為等邊三角形,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)(如圖1),AD+AE的值為;
(2)[類比探究]在上面的問題中,如果把點(diǎn)P沿BA方向移動(dòng),使PB=1,其余條件不變(如圖2),AD+AE的值是多少?請(qǐng)寫出你的計(jì)算過程;
(3)[拓展遷移]如圖3,△ABC中,AB=BC,∠ABC=a,點(diǎn)P在線段BA延長(zhǎng)線上,點(diǎn)D在線段CA延長(zhǎng)線上,在△PDE中,PD=PE,∠DPE=a,設(shè)AP=m,則線段AD、AE有怎樣的等量關(guān)系?請(qǐng)用含m,a的式子直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,以大于 AB的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M、N,作直線MN,交BC于點(diǎn)D,若△ADC的周長(zhǎng)為10,AB=6,則△ABC的周長(zhǎng)為(
A.6
B.12
C.16
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A市和B市分別有庫存的某聯(lián)合收割機(jī)12臺(tái)和6臺(tái),現(xiàn)決定開往C市10臺(tái)和D市8臺(tái),已知從A市開往C市、D市的油料費(fèi)分別為每臺(tái)400元和800元,從B市開往C市和D市的油料費(fèi)分別為每臺(tái)300元和500元.
(1)設(shè)B市運(yùn)往C市的聯(lián)合收割機(jī)為x臺(tái),求運(yùn)費(fèi)w關(guān)于x的函數(shù)關(guān)系式.
(2)若總運(yùn)費(fèi)不超過9000元,問有幾種調(diào)運(yùn)方案?
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,并求出最低運(yùn)費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案