科目: 來源: 題型:
【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進路線,在BC的中點M處放置了一臺定位儀器,設尋寶者行進的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進,且表示y與x的函數(shù)關系的圖像大致如圖②所示,則尋寶者的行進路線可能為:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣(其中m>0)與x軸分別交于A,B兩點(A在B的右側),與y軸交于點c.
(1)求△AOC的周長,(用含m的代數(shù)式表示)
(2)若點P為直線AC上的一點,且點P在第二象限,滿足OP2=PCPA,求tan∠APO的值及用含m的代數(shù)式表示點P的坐標;
(3)在(2)的情況下,線段OP與拋物線相交于點Q,若點Q恰好為OP的中點,此時對于在拋物線上且介于點C與拋物線頂點之間(含點C與頂點)的任意一點M(x0,y0)總能使不等式n≤及不等式2n﹣恒成立,求n的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,將點P沿著y軸翻折,得到的對應點再沿著直線l翻折得到點P1,則P1稱為點P的“l變換點”.
(1)已知:點P(1,0),直線l:x=2,求點P的“l變換點”的坐標;
(2)若點Q和它的“l變換點”Q1的坐標分別為(2,1)和(3,2),求直線l的解析式;
(3)如圖,⊙O的半徑為2.
①若⊙O上存在點M,點M的“l變換點”M1在射線x(x≥0)上,直線l:x=b,求b的取值范圍;
②將⊙O在x軸上移動得到⊙E,若⊙E上存在點N,使得點N的“l變換點”N1在y軸上,且直線l的解析式為y=x+1,求E點橫坐標的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務的收費方案.
甲公司方案:每月的養(yǎng)護費由兩部分組成:固定費用400元和服務費用5元/平方米;
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎上,超過部分每平方米收取4元.
(1)求甲公司養(yǎng)護費用y(元)與綠化面積x(平方米)的函數(shù)解析式(不要求寫出自變量的范圍);
(2)選擇哪家公司的服務,每月的綠化養(yǎng)護費用較少.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)由AB,BD,圍成的曲邊三角形的面積是 ;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關部門決定降低坡度,使新坡面的坡度為1:.
(1)求新坡面的坡角∠CAB的度數(shù);
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】西寧市教育局在局屬各初中學校設立“自主學習日”.規(guī)定每周三學校不得以任何形式布置家庭作業(yè),為了解各學校的落實情況,從七、八年級學生中隨機抽取了部分學生的反饋表,針對以下六個項目(每人只能選一項):A.課外閱讀;B.家務勞動;C.體育鍛煉;D.學科學習;E.社會實踐;F.其他項目進行調(diào)查,根據(jù)調(diào)查結果繪制了如下尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽查的樣本容量為 ,請補全條形統(tǒng)計圖;
(2)全市約有4萬名在校初中學生,試估計全市學生中選擇體育鍛煉的人數(shù)約有多少人?
(3)七年級(1)班從選擇社會實踐的2名女生和1名男生中選派2名參加校級社會實踐活動,請你用樹狀圖或列表法求出恰好選到1男1女的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A(a,1),B(b,3)都在雙曲線y=﹣上,點P,Q分別是x軸,y軸上的動點,則四邊形ABPQ周長的最小值為( 。
A.4B.6C.2+2D.8
查看答案和解析>>
科目: 來源: 題型:
【題目】⑴如圖1,是正方形邊上的一點,連接,將繞著點逆時針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線交于點和點.
①線段和的數(shù)量關系是 ;
②寫出線段和之間的數(shù)量關系.
⑵當四邊形為菱形,,點是菱形邊所在直線上的一點,連接,將繞著點逆時針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線交于點和點.
①如圖2,點在線段上時,請?zhí)骄烤段和之間的數(shù)量關系,寫出結論并給出證明;
②如圖3,點在線段的延長線上時,交射線于點;若 ,直接寫出線段的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市對火車站進行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動打印車票的無人售票窗口.某日,從早8點開始到上午11點,每個普通售票窗口售出的車票數(shù)y1(張)與售票時間x(小時)的正比例函數(shù)關系滿足圖①中的圖象,每個無人售票窗口售出的車票數(shù)y2(張)與售票時間x(小時)的函數(shù)關系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點)是以原點為頂點的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達式為 ,其中自變量x的取值范圍是 ;
(2)若當天共開放5個無人售票窗口,截至上午9點,兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個普通售票窗口?
(3)上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com