科目: 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,E在BC上,G在CD延長(zhǎng)線上,AE和BG相交于點(diǎn)M,若AE=BG,tan∠BME=2,菱形ABCD面積為,則AB的長(zhǎng)_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①abc<0;②2a﹣b=0;③a+b+c<0;④4ac﹣b2<0;其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】為迎接2016年中考,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)模擬考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中提供的信息解答下列問(wèn)題:
(1)這次調(diào)査中,一共抽取了多少名學(xué)生?
(2)求樣本中表示成績(jī)?yōu)椤爸小钡娜藬?shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該學(xué)校九年級(jí)共有1000人參加了這次數(shù)學(xué)考試,估計(jì)該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(1)方法選擇:如圖①,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD,AB=BC=AC.求證:BD=AD+CD.
小穎認(rèn)為可用截長(zhǎng)法證明:在DB上截取DM=AD,連接AM…
小軍認(rèn)為可用補(bǔ)短法證明:延長(zhǎng)CD至點(diǎn)N,使得DN=AD…
請(qǐng)你選擇一種方法證明.
(2)類比探究:(探究1)如圖②,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD,BC是⊙O的直徑,AB=AC.試用等式表示線段AD,BD,CD之間的數(shù)量關(guān)系,井證明你的結(jié)論.
(探究2)如圖③,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,∠ABC=30°,則線段AD,BD,CD之間的等量關(guān)系式是 .
(3)拓展猜想:如圖④,四邊形ABCD是⊙O的內(nèi)接四邊形,連接AC,BD.若BC是⊙O的直徑,BC:AC:AB=a:b:c,則線段AD,BD,CD之間的等量關(guān)系式是 .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn),.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N,
①點(diǎn)在線段上運(yùn)動(dòng),若以,,為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);
②點(diǎn)在軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn),,中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱,,三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫(xiě)出使得,,三點(diǎn)成為“共諧點(diǎn)”的的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見(jiàn)到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.下面是該定理的證明過(guò)程(部分):
延長(zhǎng)AI交⊙O于點(diǎn)D,過(guò)點(diǎn)I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所對(duì)的圓周角相等),
∴△MDI∽△ANI.∴,∴①
如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF
∵DE是⊙O的直徑,∴∠DBE=90°.
∵⊙I與AB相切于點(diǎn)F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所對(duì)圓周角相等),
∴△AIF∽△EDB.
∴,∴②
任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);
(2)請(qǐng)判斷BD和ID的數(shù)量關(guān)系,并說(shuō)明理由.
(3)請(qǐng)觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤(rùn)元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況(新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂(lè)節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2名,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】有一種落地晾衣架如圖①所示,其原理是通過(guò)改變兩根支撐桿夾角的度數(shù)來(lái)調(diào)整晾衣桿的高度.圖②是支撐桿的平面示意圖,AB和CD分別是兩根不同長(zhǎng)度的支撐桿,夾角∠BOD=α.若AO=85 cm,BO=DO=65 cm.問(wèn):當(dāng)α=74°時(shí),較長(zhǎng)支撐桿的端點(diǎn)A離地面的高度h約為______cm.(參考數(shù)據(jù):sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com