【題目】為迎接2016年中考,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)模擬考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中提供的信息解答下列問題:
(1)這次調(diào)査中,一共抽取了多少名學(xué)生?
(2)求樣本中表示成績(jī)?yōu)椤爸小钡娜藬?shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該學(xué)校九年級(jí)共有1000人參加了這次數(shù)學(xué)考試,估計(jì)該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀?
【答案】(1)一共抽取了50名學(xué)生; (2)10人,統(tǒng)計(jì)圖見解析;(3)該校九年級(jí)共有200名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀
【解析】
(1)根據(jù)統(tǒng)計(jì)圖可以求得本次調(diào)查的學(xué)生數(shù);
(2)根據(jù)(1)中的結(jié)果和統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得“中”的學(xué)生數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)統(tǒng)計(jì)圖可以求得該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀.
【解答】解:(1)22÷44%=50,
即這次調(diào)査中,一共抽取了50名學(xué)生;
(2)50×20%=10,
補(bǔ)全的條形統(tǒng)計(jì)圖如右圖所示,
(3)1000×=200,
即該校九年級(jí)共有200名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(為正整數(shù),且)與軸的交點(diǎn)為和,,當(dāng)時(shí),第1條拋物線與軸的交點(diǎn)為和,其他依次類推.
(1)求,的值及拋物線的解析式;
(2)拋物線的頂點(diǎn)的坐標(biāo)為( , );依次類推,第條拋物線的頂點(diǎn)的坐標(biāo)為( , );所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是 ;
(3)探究下列結(jié)論:
①是否存在拋物線,使得為等腰直角三角形?若存在,請(qǐng)求出拋物線的表達(dá)式;若不存在,請(qǐng)說明理由;
②若直線與拋物線分別交于則線段,,…則線段,,…的長(zhǎng)有何規(guī)律?請(qǐng)用含的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(-2,),⊙M與y軸相切于點(diǎn)C,與x軸相交于A,B兩點(diǎn).
(1)證明:△MAB是等邊三角形.
(2)在⊙M上是否存在點(diǎn)D,使△ACD是直角三角形,若存在,試求點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若P(m,n)是過A,B,C三點(diǎn)的拋物線上一點(diǎn),當(dāng)∠APB≤30°時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩人進(jìn)行羽毛球練習(xí)賽時(shí)的一個(gè)瞬間,羽毛球飛行的高度y(m)與水平距離x(m)的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.羽毛球沿水平方向運(yùn)動(dòng)4m時(shí),達(dá)到羽毛球距離地面最大高度是m.
(1)求羽毛球經(jīng)過的路線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)通過計(jì)算判斷此球能否過網(wǎng);
(3)若甲發(fā)球過網(wǎng)后,羽毛球飛行到離地面的高度為m的Q處時(shí),乙扣球成功求此時(shí)乙與球網(wǎng)的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛情況(新聞、體育、動(dòng)畫、娛樂、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2名,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,過A作BC的平行線,交∠ACB的平分線于點(diǎn)D,點(diǎn)E是BC上一點(diǎn),連接DE,交AB于點(diǎn)F,∠DEB+∠CAD=180°.
(1)如圖1,求證:四邊形ACED是菱形;
(2)如圖2,G是AD的中點(diǎn),H是AC邊中點(diǎn),連接CG、EG、EH,若∠ACB=90°,BC=2AC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中與△CEH全等的三角形(不含△CEH本身).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:
電影類型 | 第一類 | 第二類 | 第三類 | 第四類 | 第五類 | 第六類 |
電影部數(shù) | 140 | 50 | 300 | 200 | 800 | 510 |
好評(píng)率 |
注:好評(píng)率是指一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.
如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評(píng)的第四類電影的概率是______;
電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評(píng)率發(fā)生變化假設(shè)表格中只有兩類電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評(píng)率增加,哪類電影的好評(píng)率減少,可使改變投資策略后總的好評(píng)率達(dá)到最大?
答:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過圓外一點(diǎn)P作⊙O的兩條切線,切點(diǎn)分別為A、B,連接AB,在AB、PB、PA上分別取一點(diǎn)D、E、F,使AD=BE,BD=AF,連接DE、DF、EF,則∠EDF等于( 。
A.90°﹣∠PB.90°﹣∠PC.180°﹣∠PD.45°﹣∠P
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線(x>0)交于點(diǎn).
(1)求a,k的值;
(2)已知直線過點(diǎn)且平行于直線,點(diǎn)P(m,n)(m>3)是直線上一動(dòng)點(diǎn),過點(diǎn)P分別作軸、軸的平行線,交雙曲線(x>0)于點(diǎn)、,雙曲線在點(diǎn)M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)時(shí),直接寫出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);②若區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù)不超過8個(gè),結(jié)合圖象,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com