相關習題
 0  365256  365264  365270  365274  365280  365282  365286  365292  365294  365300  365306  365310  365312  365316  365322  365324  365330  365334  365336  365340  365342  365346  365348  365350  365351  365352  365354  365355  365356  365358  365360  365364  365366  365370  365372  365376  365382  365384  365390  365394  365396  365400  365406  365412  365414  365420  365424  365426  365432  365436  365442  365450  366461 

科目: 來源: 題型:

【題目】如圖,CD為⊙O的直徑,弦AB垂直于CD,垂足為H,∠EAD=∠HAD

1)求證:AE為⊙O的切線;

2)延長AECD的延長線交于點P,過D DEAP,垂足為E,已知PA2PD1,求⊙O的半徑和DE的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】操作、證明:如圖,在平行四邊形ABCD中,連接AC,以點C為圓心BC為半徑畫弧,交ABC的外接圓O于點E,連接AE、CE

1)求證:ADCE,∠D=∠E

2)連接CO,求證:CO平分∠BCE

3)判斷:一組對邊相等且一組對角相等的四邊形是平行四邊形   命題(填).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,將半徑為3的圓形紙片,按順序折疊兩次,折疊后的弧AB和弧BC都經過圓心O

1)連接OAOB,求證:∠AOB120°;

2)圖中陰影部分的面積為   

查看答案和解析>>

科目: 來源: 題型:

【題目】判斷關于x的方程mx2+2m1x+m+30的根的情況,并直接寫出關于x的方程mx2+2m1x+m+30的根及相應的m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀小明用下面的方法求出方程23x0

解法1:令t,則xt2

原方程化為2t3t20

解方程2t3t20,得t10t2;

所以0,

將方程0兩邊平方,

x0

經檢驗,x0都是原方程的解.

所以,原方程的解是x0

解法2:移項,得23x,

方程兩邊同時平方,得4x9x2,

解方程4x9x2,得x0,

經檢驗,x0都是原方程的解.

所以,原方程的解是x0

請仿照他的某一種方法,求出方法x=﹣1的解.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為2,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形中繞點B順時針旋轉,使KM邊與BC邊重合,完成第一次旋轉;再繞點C順時針旋轉,使MN邊與CD邊重合,完成第二次旋轉;…在這樣連續(xù)6次旋轉的過程中,點B,M之間距離的最小值是_____

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在中,頂點是它們的公共頂點,,

(特例感悟)(1)當頂點與頂點重合時(如圖1),相交于點相交于點,求證:四邊形是菱形;

(探索論證)(2)如圖2,當時,四邊形是什么特殊四邊形?試證明你的結論;

(拓展應用)(3)試探究:當等于多少度時,以點為頂點的四邊形是矩形?請給予證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)是常數(shù)).

(1)當時,求二次函數(shù)的最小值;

(2)當,函數(shù)值時,以之對應的自變量的值只有一個,求的值;

(3)當,自變量時,函數(shù)有最小值為-10,求此時二次函數(shù)的表達式.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF90°,延長EFBC的延長線于點G.

(1)求證:△ABE∽△EGB.

(2)AB4,求CG的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司研發(fā)了一款成本為50元的新型玩具,投放市場進行試銷售.其銷售單價不低于成本,按照物價部門規(guī)定,銷售利潤率不高于90%,市場調研發(fā)現(xiàn),在一段時間內,每天銷售數(shù)量y(個)與銷售單價x(元)符合一次函數(shù)關系,如圖所示:

1)根據(jù)圖象,直接寫出yx的函數(shù)關系式;

2)該公司要想每天獲得3000元的銷售利潤,銷售單價應定為多少元

3)銷售單價為多少元時,每天獲得的利潤最大,最大利潤是多少元?

查看答案和解析>>

同步練習冊答案