科目: 來源: 題型:
【題目】拋物線y=ax2+bx+c經(jīng)過點(﹣2,0),且對稱軸為直線x=1,其部分圖象如圖所示.對于此拋物線有如下四個結論:
①ac>0;②16a+4b+c=0;③若m>n>0,則x=1+m時的函數(shù)值大于x=1﹣n時的函數(shù)值;④點(﹣,0)一定在此拋物線上.其中正確結論的序號是( 。
A. ①②B. ②③C. ②④D. ③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′=________
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,拋物線的的頂點為.
(1)頂點的坐標為 .
(2)橫、縱坐標都是整數(shù)的點叫做整點.若軸且
①點的坐標為 ;
②過點作軸的垂線,若直線與拋物線交于兩點,該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個整點,結合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某種汽車剎車后行駛的距離s(單位:m)關于行駛的時間t(單位:s)的函數(shù)關系式為s=15t-at2,且t=1時,s=9.
(1)求s與t的函數(shù)關系式;
(2)該汽車剎車后到停下來前進了多遠?
(3)該汽車剎車后前進6m時行駛了多長時間?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:直線y=ax+b與拋物線的一個交點為(0,2),同時這條直線與x軸相交于點A,且相交所成的角為45°.
(1)點A的坐標為__________;
(2)若拋物線與x軸交于點M、N(點M在點N左邊),將此拋物線作關于y軸對稱,M的對應點為E,兩拋物線相交于點F,連接NF,EF得△NEF,P是軸對稱后的拋物線上的點,使得△NEP的面積與△NEF的面積相等,則P點坐標為_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種文具,進價為5元/件.售價為6元/件時,當天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當天的銷售量就減少5件.設當天銷售單價統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當天銷售利潤為元.
(1)求與的函數(shù)關系式(不要求寫出自變量的取值范圍);
(2)要使當天銷售利潤不低于240元,求當天銷售單價所在的范圍;
(3)若每件文具的利潤不超過,要想當天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2-4x+3與x軸交于點A 、B(點A在點B的左側(cè)),與y軸交于點C.
(1)求直線BC的表達式;
(2)垂直于y軸的直線l與拋物線交于點 ,與直線BC交于點,若x1<x2<x3,結合函數(shù)的圖象,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點為M,與y軸的交點為N,我們稱以N為頂點,對稱軸是y軸且過點M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.
(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 ,衍生直線的解析式是 ;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(1)中的拋物線y=x2﹣2x﹣3的頂點為M,與y軸交點為N,將它的衍生直線MN先繞點N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個單位得直線n,P是直線n上的動點,是否存在點P,使△POM為直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com