【題目】已知某種汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時間t(單位:s)的函數(shù)關(guān)系式為s=15t-at2,且t=1時,s=9.
(1)求s與t的函數(shù)關(guān)系式;
(2)該汽車剎車后到停下來前進了多遠?
(3)該汽車剎車后前進6m時行駛了多長時間?
【答案】(1)s=15t-6t2(2)m(3)s.
【解析】
(1)把t=1,s=9代入s=15t-at2,求出a即可求出答案;
(2)該汽車剎車后到停下來前進的距離即為該汽車剎車后能行駛的最大距離,由(1)得到的解析式化成頂點式即可求出答案;
(3)該汽車剎車后前進6m,即s=6,將s=6代入解析式即可求出答案.
解:(1)當t=1,s=9時,
9=15×1-a,
解得:a=6,
∴s與t的函數(shù)關(guān)系式為:s=15t-6t2.
(2)∵s=15t-6t2=,
∴當t=時,s=,
∴汽車剎車后到停下來前進了m.
(3)當s=6時,15t-6t2=6,
解得:,,
∵汽車剎車后到停下來所用的時間是s,
∴s,
∴汽車剎車后前進6m時行駛了s.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線y=kx+4(k≠0)交x軸于點A(8,0),交y軸于點B,
(1)k的值是 ;
(2)點C是直線AB上的一個動點,點D和點E分別在x軸和y軸上.
①如圖,點E為線段OB的中點,且四邊形OCED是平行四邊形時,求OCED的周長;
②當CE平行于x軸,CD平行于y軸時,連接DE,若△CDE的面積為,請直接寫出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將平行四邊形ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:AC=BE;
(2)若∠AFC=2∠D,連接AC,BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店銷售一種水果的成本價是元/千克.在銷售過程中發(fā)現(xiàn),當這種水果的價格定在元/千克時,每天可以賣出千克.在此基礎(chǔ)上,這種水果的單價每提高元/千克,該水果店每天就會少賣出千克.
若該水果店每天銷售這種水果所獲得的利潤是元,則單價應(yīng)定為多少?
在利潤不變的情況下,為了讓利于顧客,單價應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點為M,與y軸的交點為N,我們稱以N為頂點,對稱軸是y軸且過點M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.
(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 ,衍生直線的解析式是 ;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點為M,與y軸交點為N,將它的衍生直線MN先繞點N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個單位得直線n,P是直線n上的動點,是否存在點P,使△POM為直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+2x+3的頂點為D,它與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)求頂點D的坐標;
(2)求直線BC的解析式;
(3)求△BCD的面積;
(4)當點P在直線BC上方的拋物線上運動時,△PBC的面積是否存在最大值?若存在,請求出這個最大值,并且寫出此時點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣與一次函數(shù)y=x+b的圖象在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩個函數(shù)的表達式;
(2)求△AOB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸的負半軸于點.點是軸正半軸上一點,點關(guān)于點的對稱點恰好落在拋物線上.過點作軸的平行線交拋物線于另一點.若點的橫坐標為1,則的長為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com