科目: 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據兩方程的特點,使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結束】
20
【題目】已知x1,x2是關于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個三角形的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某賓館有50個房間供游客居住,當每個房間定價120元時,房間會全部住滿,當每個房間每天的定價每增加10元時,就會有一個房間空閑如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設每個房間定價增加10x元為整數(shù).
直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關系式.
設賓館每天的利潤為W元,當每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
某日,賓館了解當天的住宿的情況,得到以下信息:①當日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費用沒有超過600元,③每個房間剛好住滿2人問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CE是ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:
①四邊形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四邊形AFOE:S△COD=2:3.
其中正確的結論有_____.(填寫所有正確結論的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,其部分圖象如圖所示.則下列結論:①;②;③;④(為實數(shù));⑤點,,是該拋物線上的點,則,正確的個數(shù)有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目: 來源: 題型:
【題目】對于二次函數(shù)和一次函數(shù),我們把 稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線E.現(xiàn)有點A(1,0)和拋物線E上的點B(2,n),請完成下列任務:
(嘗試)
(1)當t=2時,拋物線的頂點坐標為 .
(2)判斷點A是否在拋物線E上;
(3)求n的值.
(發(fā)現(xiàn))通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線E總過定點,定點的坐標 .
(應用)二次函數(shù)是二次函數(shù)和一次函數(shù) 的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在三角形ABC中,∠ACB=90°,AC=6,BC=8,點D為邊BC的中點,射線DE⊥BC交AB于點E.點P從點D出發(fā),沿射線DE以每秒1個單位長度的速度運動.以PD為斜邊,在射線DE的右側作等腰直角△DPQ.設點P的運動時間為t(秒).
(1)用含t的代數(shù)式表示線段EP的長.
(2)求點Q落在邊AC上時t的值.
(3)當點Q在△ABC內部時,設△PDQ和△ABC重疊部分圖形的面積為S(平方單位),求S與t之間的函數(shù)關系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入﹣成本),并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】中華文化歷史悠久,包羅萬象.某校為了加強學生對中華傳統(tǒng)文化的認識和理解,營造校園文化氛圍,舉辦了“弘揚中華傳統(tǒng)文化,做新時代的中學生”的知識競賽.以下是從七年、八年兩個年級隨機抽取20名同學的測試成績進行調查分析,成績如下:
七年級: 76 88 93 65 78 94 89 68 95 50
89 88 89 89 77 94 87 88 92 91
八年級: 74 97 96 89 98 74 69 76 72 78
99 72 97 76 99 74 99 73 98 74
(1)根據上面的數(shù)據,將下列表格補充完整,整理、描述數(shù)據:
七年級 | 1 | 2 | 6 | ||
八年級 | 0 | 1 | 10 | 1 | 8 |
(說明:成績90分及以上為優(yōu)秀,60分以下為不合格)分析數(shù)據:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級 | 84 | 88.5 | |
八年級 | 84.2 | 74 |
(2)為調動學生學習傳統(tǒng)文化的積極性,七年級根據學生的成績制定了獎勵標準,凡達到或超過這個標準的學生將獲得獎勵.如果想讓一半左右的學生能獲獎,應根據______來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”);
(3)若八年級有800名學生,試估計八年級學生成績優(yōu)秀的人數(shù);
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點和點,對稱軸為直線.
求該二次函數(shù)的關系式和頂點坐標;
結合圖象,解答下列問題:
①當時,求函數(shù)的取值范圍.
②當時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com