科目: 來源: 題型:
【題目】如圖,直線y=kx+6與x軸,y軸分別相交于點A,B,O為坐標原點,點A的坐標為(-8,0).
(1)求k的值;
(2)若點P(x,y)是第二象限內直線上的一個動點,在點P的運動過程中,試寫出△OPA的面積S與x之間的函數(shù)關系式,并寫出自變量的取值范圍;
(3)若點P(0,m)為射線BO(B,O兩點除外)上的一動點,過點P作PC⊥y軸交直線AB于C,連接PA.設△PAC的面積為S′,求S′與m的函數(shù)關系式,并寫出自變量m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】課題小組從某市20000名九年級男生中,隨機抽取了1000名進行50米跑測試,并根據(jù)測試結果繪制了如下尚不完整的統(tǒng)計圖表.
等級 | 人數(shù)/名 |
優(yōu)秀 | a |
良好 | b |
及格 | 150 |
不及格 | 50 |
解答下列問題:
(1)a等于多少?,b等于多少?
(2)補全條形統(tǒng)計圖;
(3)試估計這20000名九年級男生中50米跑達到良好和優(yōu)秀等級的總人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AC=6 ,點D為直線AB上一點,且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于(-1,0),(3,0)兩點,則下列說法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)為拋物線上三點,且-1<x1<x2<1,x3>3,則y2<y1<y3,其中正確的結論是( 。
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列四個條件:
①∠EBO=∠DCO;②BE=CD;③OB=OC;④OE=OD.
從上述四個條件中,選取兩個條件,不能判定△ABC是等腰三角形的是:( )
A. ①②B. ①③C. ③④D. ②③
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=x2+bx+c的圖象與一次函數(shù)y=x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標為(1,0)
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上有一動點P,從O點出發(fā)以每秒1個單位的速度沿x軸向右運動,是否存在點P使得△PBC是以P為直角頂點的直角三角形?若存在,求出點P運動的時間t的值,若不存在,請說明理由.
(4)若動點P在x軸上,動點Q在射線AC上,同時從A點出發(fā),點P沿x軸正方向以每秒2個單位的速度運動,點Q以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與△ABD相似,若存在,求a的值,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,在平面直角坐標系xOy中,點A在x軸負半軸上,點B在y軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點,且AM=BM.
(1)求點M的坐標;
(2)求直線AB的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,E是BC的中點,AD="5" cm,BC="12" cm,CD=cm,∠C=45°,點P從B點出發(fā),沿著BC方向以1cm/s運動,到達點C停止,設P運動了ts.
(1)當t為何值時以點P、A、D、E為頂點的四邊形為直角梯形;
(2)當t為何值時以點P、A、D、E為頂點的四邊形為平行四邊形;
(3)點P在BC邊上運動的過程中,以P、A、D、E為頂點的四邊形能否構成菱形?如能,請求出t值,如不能請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校文體藝術節(jié)期間,舉辦“愛我云南,唱我云南”文藝晚會.每個班推薦一個節(jié)目參加晩會表演,參加晚會表演的節(jié)目均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,明明根據(jù)獲獎情況繪制岀如圖所示的兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答下列問題.
(1)二等獎的獲獎人數(shù)所占的百分比是 ;
(2)在此次比賽中,一共有多少同學參賽?請將折線統(tǒng)計圖補充完整.
查看答案和解析>>
科目: 來源: 題型:
【題目】王老師從學校出發(fā),到距學校的某商場去給學生買獎品,他先步行了后,換騎上了共享單車,到達商場時,全程總共剛好花了.已知王老師騎共享單車的平均速度是步行速度的3倍(轉換出行方式時,所需時間忽略不計).
(1)求王老師步行和騎共享單車的平均速度分別為多少?
(2)買完獎品后,王老師原路返回,為按時上班,路上所花時間最多只剩10分鐘,若王老師仍采取先步行,后換騎共享單車的方式返回,問:他最多可步行多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com