科目: 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC、BC為邊,在Rt△ABC外作兩個等邊三角形△ACE和△BCF,連接BE、AF分別交AC、BC邊于H、D兩點.下列結(jié)論:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正確結(jié)論的個數(shù)是( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學(xué)概念:百度百科上這樣定義絕對值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗,我們來研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開始”
我們嘗試從特殊到一般,先研究當(dāng)a=1時的函數(shù)y=│x+1│.
按照要求完成下列問題:
(1)觀察該函數(shù)表達(dá)式,直接寫出y的取值范圍;
(2)通過列表、描點、畫圖,在平面直角坐標(biāo)系中畫出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當(dāng)a的值為-2,-,2,3,…時函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫出函數(shù)y=│x+a│的一條性質(zhì).
知識應(yīng)用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點,且滿足x1<x2≤-1時, y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】近期豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注.當(dāng)市場豬肉的平均價格每千克達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
從今年年初至月日,豬肉價格不斷走高,月日比年初價格上漲了.某市民在今年月日購買千克豬肉至少要花元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)月日,豬肉價格為每千克元月日,某市決定投入儲備豬肉并規(guī)定其銷售價在每千克元的基礎(chǔ)上下調(diào)出售.某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為每千克元的情況下,該天的兩種豬肉總銷量比月日增加了,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比月日提高了,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】快車和慢車分別從A市和B市兩地同時出發(fā),勻速行駛,先相向而行,慢車到達(dá)A市后停止行駛,快車到達(dá)B市后,立即按原路原速度返回A市(調(diào)頭時間忽略不計),結(jié)果與慢車同時到達(dá)A市.快、慢兩車距B市的路程y1、y2(單位:km)與出發(fā)時間x(單位:h)之間的函數(shù)圖像如圖所示.
(1)A市和B市之間的路程是 km;
(2)求a的值,并解釋圖中點M的橫坐標(biāo)、縱坐標(biāo)的實際意義;
(3)快車與慢車迎面相遇以后,再經(jīng)過多長時間兩車相距20 km?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,線段,,點從點開始繞著點以的速度順時針旋轉(zhuǎn)一周回到點后停止,點同時出發(fā)沿射線自點向點運動,若點、兩點能恰好相遇,則點運動的速度為________;
將一副三角板中的兩塊直角三角尺的直角頂點按如圖方式疊放在一起(其中,,,;).將三角尺固定,另一三角尺的邊從邊開始繞點轉(zhuǎn)動,轉(zhuǎn)動速度與問中點速度相同,當(dāng)且點在直線的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請寫出有可能的值及對應(yīng)轉(zhuǎn)動的時間;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.
(1)判斷△ABD的形狀,并說明理由;
(2)求BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】太平商場銷售一批名牌恤,平均每天可售出件,每件盈利元,為了擴(kuò)大銷售,增加盈利,商場決定采用適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查,如果每件恤每降價元,商場平均每天多售出件,
①若商場平均每天要盈利元,則每件恤應(yīng)降價多少元?
②每件恤降價多少元時,商場平均每天盈利最多?最大盈利多少元?請說明你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù).
(1)當(dāng)時,求該拋物線與坐標(biāo)軸的交點的坐標(biāo);
(2)當(dāng)時,求的最大值;
(3)若直線與二次函數(shù)的圖象交于、兩點,問線段的長度是否是定值?如果是,求出其長度;如果不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①、圖②,方格紙中的每個小正方形的邊長均為1,小正方形的頂點稱為格點,圖①和圖②中的點A、點B都是格點.分別在圖①、圖②中畫出格點C,并滿足下面的條件:
(1)在圖①中,使∠ABC=90°.此時AC的長度是 .
(2)在圖②中,使AB=AC.此時△ABC的邊AB上的高是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com