科目: 來源: 題型:
【題目】某中學(xué)為了解學(xué)生對央視節(jié)目的觀看情況,隨機(jī)抽取了部分學(xué)生就“《國家寶藏》、《中國詩詞大會》、《挑戰(zhàn)不可能》、《歡樂中國人》這四個節(jié)目你看過幾個“這個問題進(jìn)行了問卷調(diào)查,被調(diào)查的每位同學(xué)可以在”0個、1個、2個、3個、4個“中選擇一項,并根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖.
請根據(jù)圖中的信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計圖;
(2)所抽取學(xué)生觀看節(jié)目個數(shù)的眾數(shù)是 ;
(3)若該學(xué)校有2000人,請你估計該學(xué)?催^其中2個節(jié)目的學(xué)生人數(shù)是多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=4,AC的垂直平分線EF交AD于點(diǎn)E、交BC于點(diǎn)F,則EF的長為( 。
A. 4 B. 2 C. D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)已知關(guān)于x的方程2x2﹣mx﹣m2=0有一個根是1,求m的值;
(2)已知關(guān)于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一個根是0,求另一個根和m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:二次函數(shù)y=﹣2x2+4x+m+1,與x軸的公共點(diǎn)為A,B.
(1)如果A與B重合,求m的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn):
①當(dāng)m=﹣1時,求線段AB上整點(diǎn)的個數(shù);
②若設(shè)拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)整點(diǎn)的個數(shù)為n,當(dāng)1<n≤8時,結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有長為30米的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借用一段墻體(墻體的最大可使用長度a=10米).設(shè)花圃的一邊AB長為x米,面積為y平方米.
(1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)如果所圍成的花圃的面積為63平方米,試求寬AB的長;
(3)按題目的設(shè)計要求, (填“能”或“不能”)圍成面積為80平方米的花圃.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=m(x+3)2+n與y=m(x﹣2)2+n+1交于點(diǎn)A.過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B、C(點(diǎn)B在點(diǎn)C左側(cè)),則線段BC的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】從﹣2,﹣1,0,1,,4這六個數(shù)中,隨機(jī)抽取一個數(shù)記為a,若數(shù)a使關(guān)于x的分式方程有整數(shù)解,且使拋物線y=(a﹣1)x2+3x﹣1的圖象與x軸有交點(diǎn),那么這六個數(shù)中所滿足條件的a的值之和為( 。
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),連接BD,點(diǎn)H為BD的中點(diǎn).請解答下列問題:
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)在y軸上找一點(diǎn)P,使PD+PH的值最小,則PD+PH的最小值為 .
(注:拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣,頂點(diǎn)坐標(biāo)為(﹣,)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是,延長FD到點(diǎn)G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
實際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn)1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com