相關習題
 0  357515  357523  357529  357533  357539  357541  357545  357551  357553  357559  357565  357569  357571  357575  357581  357583  357589  357593  357595  357599  357601  357605  357607  357609  357610  357611  357613  357614  357615  357617  357619  357623  357625  357629  357631  357635  357641  357643  357649  357653  357655  357659  357665  357671  357673  357679  357683  357685  357691  357695  357701  357709  366461 

科目: 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點A(﹣2,0),點B(4,0),點D(2,4),與y軸交于點C,作直線BC,連接AC,CD.

(1)求拋物線的函數(shù)表達式;

(2)E是拋物線上的點,求滿足∠ECD=∠ACO的點E的坐標;

(3)點M在y軸上且位于點C上方,點N在直線BC上,點P為第一象限內拋物線上一點,若以點C,M,N,P為頂點的四邊形是菱形,求菱形的邊長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目: 來源: 題型:

【題目】直線y=ax+b經(jīng)過第二、三、四象限,那么下列結論正確的是(  )

A. =a+b

B. 點(a,b)在第一象限內

C. 反比例函數(shù),當x>0時,函數(shù)值yx增大而減小

D. 拋物線y=ax2+bx+c的對稱軸過二、三象限

查看答案和解析>>

科目: 來源: 題型:

【題目】一個三角形的三邊的比為5:4:3,它的周長為60cm,則它的面積是______cm2

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點A,B,與y軸交于點C,直線y=﹣x+2經(jīng)過點A,C

(1)求拋物線的解析式;

(2)點P為直線AC上方拋物線上一動點.

①連接PO,交AC于點E,求的最大值;

②過點PPFAC,垂足為點F連接PC,是否存在點P,使△PFC中的一個角等于∠CAB2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣22),B(﹣3,﹣2)(每個小正方形的邊長均為1).

1)若點D與點A關于y軸對稱則點D的坐標為   

2)將點B向右平移5個單位,再向上平移2個單位得到點C,則點C的坐標為   

3)請在圖中表示出D、C兩點,順次連接ABCD,并求出AB、C、D組成的四邊形ABCD的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系上,已知點A8,4),ABy軸于B,ACx軸于C,直線yxABD

1)直接寫出B、C、D三點坐標;

2)若EOD延長線上一動點,記點E橫坐標為a,BCE的面積為S,求Sa的關系式;

3)當S20時,過點EEFABF,G、H分別為AC、CB上動點,求FG+GH的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某游泳館普通票價20/,暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/每次憑卡不再收費

銀卡售價150/,每次憑卡另收10

暑假普通票正常出售兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設游泳x次時,所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關系式

(2)在同一坐標系中,若三種消費方式對應的函數(shù)圖象如圖所示,請求出點A、B、C的坐標

(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目: 來源: 題型:

【題目】這是一道我們曾經(jīng)探究過的問題:如圖1.等腰直角三角形中,,.直線經(jīng)過點,過于點,過于點.易證得.(無需證明),我們將這個模型稱為“一線三等角”或者叫“K形圖”.接下來,我們就利用這個模型來解決一些問題:

(模型應用)

(1)如圖2.已知直線l1與與坐標軸交于點A、B.以AB為直角邊作等腰直角三角形ABC,若存在,請求出C的坐標;不存在,若說明理由.

(2)如圖3已知直線l1與坐標軸交于點A、B.將直線l1繞點A逆時針旋轉45°至直線l2.直線l2x軸上方的圖像上是否存在一點Q,使得△QAB是以QA為底的等腰直角三角形?若存在,請求出直線BQ的函數(shù)關系式;若不存在,說明理由.

(拓展延伸)

3)直線AB軸負半軸、軸正半軸分別交于AB兩點.分別以OB、AB為邊,點B為直角頂點在第一、二象限內作等腰直角△OBF和等腰直角△ABE,連EFy軸于P點,如圖4,△EPB的面積是否確定?若確定,請求出具體的值;若不確定,請說明理由.

查看答案和解析>>

同步練習冊答案