【題目】一個三角形的三邊的比為5:4:3,它的周長為60cm,則它的面積是______cm2.
科目:初中數學 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,點D是平面內一點;
(1)如圖1, BD⊥CD,∠DCA=30°,則∠BAD=
(2)如圖2,若∠BDC=45°,點F是CD中點,求證:AF⊥CD;
(3)如圖3,∠BDA=3∠CBD,BD=,求△BCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.
(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數量關系.經過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD= BD.
(2)探究證明
將直線MN繞點A順時針旋轉到圖2的位置寫出此時線段DC,AD,BD之間的數量關系,并證明
(3)拓展延伸
在直線MN繞點A旋轉的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】這是一道我們曾經探究過的問題:如圖1.等腰直角三角形中,,.直線經過點,過作于點,過作于點.易證得≌.(無需證明),我們將這個模型稱為“一線三等角”或者叫“K形圖”.接下來,我們就利用這個模型來解決一些問題:
(模型應用)
(1)如圖2.已知直線l1:與與坐標軸交于點A、B.以AB為直角邊作等腰直角三角形ABC,若存在,請求出C的坐標;不存在,若說明理由.
(2)如圖3已知直線l1:與坐標軸交于點A、B.將直線l1繞點A逆時針旋轉45°至直線l2.直線l2在x軸上方的圖像上是否存在一點Q,使得△QAB是以QA為底的等腰直角三角形?若存在,請求出直線BQ的函數關系式;若不存在,說明理由.
(拓展延伸)
(3)直線AB:與軸負半軸、軸正半軸分別交于A、B兩點.分別以OB、AB為邊,點B為直角頂點在第一、二象限內作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點,如圖4,△EPB的面積是否確定?若確定,請求出具體的值;若不確定,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中∠ACB=90°,CD是AB邊上的高,∠BAC的角平分線AF交CD于E,則△CEF必為( )
A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦BC,DE相交于點F,且DE⊥AB于點G,過點C作⊙O的切線交DE的延長線于點H.
(1)求證:HC=HF;
(2)若⊙O的半徑為5,點F是BC的中點,tan∠HCF=m,寫出求線段BC長的思路.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,將△ABC繞點B旋轉α(0<α<60°)到△A′BC′,邊AC和邊A′C′相交于點P,邊AC和邊BC′相交于Q.當△BPQ為等腰三角形時,則α=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰中,,,于點,點是延長線上一點,點是線段上一點,.下列結論:①;②;③是等邊三角形;④.其中正確結論的個數是( )
A.1B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com