科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結AP并延長AP交CD于F點,連結CP并延長CP交AD于Q點.給出以下結論:
①四邊形AECF為平行四邊形;
②∠PBA=∠APQ;
③△FPC為等腰三角形;
④△APB≌△EPC.
其中正確結論的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉,給出下列結論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結論有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為1的菱形ABCD中,∠DAB=60°,連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第六個菱形的邊長為( )
A. 9 B. C. 27 D.
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與實踐
已知,在Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞點D旋轉,它的兩邊分別交AC,CB(或它們的延長線)于點E,F.
(1)(問題發(fā)現(xiàn))
如圖1,當∠EDF繞點D旋轉到DE⊥AC于點E時(如圖1),
①證明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(類比探究)
如圖2,當∠EDF繞點D旋轉到DE與AC不垂直時,且點E在線段AC上,試判斷S△DEF+S△CEF與S△ABC的關系,并給予證明.
(3)(拓展延伸)
如圖3,當點E在線段AC的延長線上時,此時問題(2)中的結論是否成立?若成立,請給予證明;若不成立,S△DEF,S△CEF,S△ABC又有怎樣的關系?(寫出你的猜想,不需證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】泰勒斯是古希臘哲學家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船A在B的正前方,過B作AB的垂線,在垂線上截取任意長BD,C是BD的中點,觀察者從點D沿垂直于BD的DE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A(x,0),B(0,y),且x,y滿足,且點A與點C關于y軸對稱.
(1)求C坐標;
(2)如圖1,點D在射線BA上,連接CD,若b=4,∠D=∠CBA,求CD長
(3)如圖2,如圖2,BC=2OC,點Q是平面內(nèi)一點,連接 QB,QC,QA,若QB=m,QC=OA,求AQ最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD;其中正確結論的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面內(nèi)有一等腰Rt△ABC,∠ACB=90°,點A在直線l上.過點C作CE⊥1于點E,過點B作BF⊥l于點F,測量得CE=3,BF=2,則AF的長為( 。
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com