科目: 來源: 題型:
【題目】△ABC三頂點A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'與△ABC關于y軸對稱.
(1)直接寫出A'、B'、C'的坐標;
(2)畫出△A'B'C';
(3)求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,線段AB=8,射線BG⊥AB,P為射線BG上一點,連接AP,作AP⊥CP且AP=CP,連接AC,PD平分∠APC,且C、D與點B在AP兩側,在線段DP取一點E,使∠EAP=∠BAP,連接CE與線段AB相交于點F(點F與點A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關系,并說明理由;
(3)求△AEF的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】(問題引領)
問題1:如圖1,在四邊形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分別是AB,AD上的點.且∠ECF=60°.探究圖中線段BE,EF,FD之間的數量關系.小王同學探究此問題的方法是,延長FD到點G.使DG=BE.連結CG,先證明△CBE≌△CDG,再證明△CEF≌△CGF.他得出的正確結論是 .
(探究思考)
問題2:如圖2,若將問題1的條件改為:四邊形ABCD中,CB=CD,∠ABC+∠ADC=180°,∠ECF=∠BCD,問題1的結論是否仍然成立?請說明理由.
(拓展延伸)
問題3:如圖3,在問題2的條件下,若點E在AB的延長線上,點F在DA的延長線上,若BE=2,DF=8,求EF的長(請直接寫出答案)
查看答案和解析>>
科目: 來源: 題型:
【題目】觀察下列兩個等式:,.給出定義如下:使等式成立的一對有理數,為“共生有理數對”,記為.如:數對,都有“共生有理數對”.
(1)數對,中是“共生有理數對”的是 .
(2)請再寫出另外一對符合條件的“共生有理數對” (不能與題目中已有的重復).
(3)小丁說:“若是‘共生有理數對’,則一定是‘共生有理數對’.”請你用(2)中寫出的“共生有理數對”驗證小丁的說法.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數m,方程總有兩個不相等的實數根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目: 來源: 題型:
【題目】榮獲“中華名果”稱號的市臍橙果大形正,橙紅鮮艷,含果汁55%以上,深受廣大“吃貨”的喜愛.現有20筐市臍橙,以每筐25千克為標準,超過或不足的千克數分別用正、負數來表示,記錄如下:
與標準質量的差值 (單位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐數 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)在這20筐市臍橙中,最重的一筐比最輕的一筐重多少千克?
(2)與標準重量比較,20筐市臍橙總計超過或不足多少千克?
(3)若市臍橙每千克售價8元,則這20筐市臍橙可賣多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關于x的“勾系一元二次方程”ax+cx+b=0必有實數根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關系并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊中點,過D點作DE⊥DF,交AB于E,交BC于F,連接BD.
(1)求證:△CDF≌△BED
(2)若AE=4,FC=3,求AB長
查看答案和解析>>
科目: 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達小彬家,繼續(xù)向東跑了1.5km到達小紅家,然后又向西跑了4.5km到達學校,最后又向東,跑回到自己家.
(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學校的位置;
(2)求小彬家與學校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com