【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,AB∥y軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y=經(jīng)過點(diǎn)B.
(1)求a的值及雙曲線y=的解析式;
(2)經(jīng)過點(diǎn)B的直線與雙曲線y=的另一個(gè)交點(diǎn)為點(diǎn)C,且△ABC的面積為.
①求直線BC的解析式;
②過點(diǎn)B作BD∥x軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個(gè)動點(diǎn).若將△BDP以它的一邊為對稱軸進(jìn)行翻折,翻折前后的兩個(gè)三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
【答案】(1)y=(2)①y=x-1②(﹣1,﹣2)或(,-)
【解析】
試題(1)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得到解得a=2,則A(2,-)),再確定點(diǎn)B的坐標(biāo)為(2,1),然后把B點(diǎn)坐標(biāo)代入中求出m的值即可得到反比例函數(shù)的解析式;
(2)①過點(diǎn)C作CE⊥AB于點(diǎn)E,如圖5.,根據(jù)三角形面積公式得到解得CE=3,點(diǎn)C的橫坐標(biāo)為-1.
∵點(diǎn)C在雙曲線上,則點(diǎn)C的坐標(biāo)為(-1,-2),再利用待定系數(shù)法求直線BC的解析式;②先確定D(-1,1),根據(jù)直線BC解析式的特征可得直線BC與x軸的夾角為45°,而BD∥x軸,于是得到∠DBC=45°,根據(jù)正方形的判定方法,只有△PBD為等腰直角三角形時(shí),以它的一邊為對稱軸進(jìn)行翻折,翻折前后的兩個(gè)三角形所組成的四邊形為正方形,分類討論:若∠BPD=90°,則點(diǎn)P在BD的垂直平分線上,易得此時(shí)P(,-);若∠BDP=90°,利用PD∥y軸,易得此時(shí)P(-1,-2).
試題解析:(1)∵點(diǎn)A在直線上,
∴.
∴.…………………………1分
∵AB∥y軸,且點(diǎn)B的縱坐標(biāo)為1,
∴點(diǎn)B的坐標(biāo)為(2,1).
∵雙曲線經(jīng)過點(diǎn)B(2,1),
∴,即.
∴反比例函數(shù)的解析式為.
(2)①過點(diǎn)C作CE⊥AB于點(diǎn)E,如圖.
∴.
∴CE="3."
∴點(diǎn)C的橫坐標(biāo)為-1.
∵點(diǎn)C在雙曲線上,
∴點(diǎn)C的坐標(biāo)為(-1,-2).
設(shè)直線BC的解析式為,
則解得
∴直線BC的解析式為.
②(-1,-2)或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k>0)與矩形OABC在第一象限相交于D、E兩點(diǎn),OA=2,OC=4,連接OD、OE、DE.記△OAD、△OCE的面積分別為S、S .
(1)①點(diǎn)B的坐標(biāo)為 ;②S S(填“>”、“<”、“=”);
(2)當(dāng)點(diǎn)D為線段AB的中點(diǎn)時(shí),求k的值及點(diǎn)E的坐標(biāo);
(3)當(dāng)S+S=2時(shí),試判斷△ODE的形狀,并求△ODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分 )在端午節(jié)前夕三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的售銷情況,請跟據(jù)小麗提供的信息,解答小華和小明提出的問題
小麗:每個(gè)定價(jià)3元,每天能賣出500個(gè),而且,這種粽子每上漲0.1元,其售銷量將減小10個(gè)
小華:照你所說,如果實(shí)現(xiàn)每天800元的售銷利潤,那該如何定價(jià)?莫忘了物價(jià)局規(guī)定售價(jià)不能超過進(jìn)價(jià)的240%喲
小明:800元售銷利潤是不是最多的呢?如果不是,那該如何定價(jià),才會使每天的利潤最大?.
(1)小華的問題解答:
(2)小明的問題解答:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民在枯水期(當(dāng)年11月至第二年5月)節(jié)約用電,規(guī)定7:00至23:00為用電高峰期,此期間用電電費(fèi)y1(單位:元)與用電量x(單位:度)之間滿足的關(guān)系如圖所示;規(guī)定23:00至第二天早上7:00為用電低谷期,此期間用電電費(fèi)y2(單位:元)與用電量x(單位:元)之間滿足如表所示的一次函數(shù)關(guān)系.
(1)求y2與x的函數(shù)關(guān)系式;并直接寫出當(dāng)0≤x≤180和x>180時(shí),y1與x的函數(shù)關(guān)系式;
(2)若市民王先生一家在12月份共用電350度,支付電費(fèi)150元,求王先生一家在高峰期和低谷期各用電多少度.
低谷期用電量x度 | … | 80 | 100 | 140 | … |
低谷期用電電費(fèi)y2元 | … | 20 | 25 | 35 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線BC的表達(dá)式;
(3)在(2)的條件下,直線BC與y軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;
(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在等邊的邊上,,射線,垂足為點(diǎn),點(diǎn)是射線上一動點(diǎn),點(diǎn)是線段上一動點(diǎn),當(dāng)的值最小時(shí),,則的長為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形中,,,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,且 ,滿足.
(1)寫出、兩點(diǎn)坐標(biāo);
(2)求點(diǎn)坐標(biāo);
(3)如圖,,為上一點(diǎn),且,請寫出線段的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點(diǎn)C,與x軸正半軸相交于點(diǎn)A,OA=OC,與x軸的另一個(gè)交點(diǎn)為B,對稱軸是直線x=1,頂點(diǎn)為P.
(1)求這條拋物線的表達(dá)式和頂點(diǎn)P的坐標(biāo);
(2)拋物線的對稱軸與x軸相交于點(diǎn)M,求∠PMC的正切值;
(3)點(diǎn)Q在y軸上,且△BCQ與△CMP相似,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+(m﹣3)x﹣m+2的圖象交x軸正半軸于點(diǎn)A,交x軸負(fù)半軸于點(diǎn)B,交y軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若△ABC恰為等腰三角形,求m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com