【題目】拋物線y=x2+(m﹣3)x﹣m+2的圖象交x軸正半軸于點(diǎn)A,交x軸負(fù)半軸于點(diǎn)B,交y軸于點(diǎn)C.

(1)求m的取值范圍;

(2)若ABC恰為等腰三角形,求m.

【答案】(1)m>2(2)3+;3

【解析】

(1)拋物線與x軸正半軸交于點(diǎn)A,交x軸負(fù)半軸于點(diǎn)B,則x2+(m﹣3)x﹣m+2=0的兩個(gè)根一正一負(fù);即x1x2<0,由此即可求得m的取值范圍;(2)用含有m的式子表示出點(diǎn)ABC的坐標(biāo),在分AB=BCAB=AC、AC=BC三種情況求m的值即可

(1)可知x2+(m﹣3)x﹣m+2=0的兩個(gè)根一正一負(fù),

x1x2=﹣m+2<0,

m>2;

(2)令y=0,得x=1或﹣m+2,

∴A(1,0),B(﹣m+2,0),C(0,﹣m+2),

∵△ABC恰為等腰三角形,

當(dāng)AB=BC時(shí),m﹣1=(m﹣2),

解得m=3+;

當(dāng)AB=AC時(shí),m﹣1=,

解得m=2(舍去);

當(dāng)AC=BC時(shí),(2﹣m)=,

解得m=31(舍去1);

∴m的值為3+;3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,ABy軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y經(jīng)過點(diǎn)B

(1)a的值及雙曲線y的解析式;

(2)經(jīng)過點(diǎn)B的直線與雙曲線y的另一個(gè)交點(diǎn)為點(diǎn)C,且△ABC的面積為

①求直線BC的解析式;

②過點(diǎn)BBDx軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn).若將△BDP以它的一邊為對稱軸進(jìn)行翻折,翻折前后的兩個(gè)三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y=﹣2x+2x軸于點(diǎn)A,交y軸于點(diǎn)B,直線l2yx+1x軸于點(diǎn)D,交y軸于點(diǎn)C,直線l1、l2交于點(diǎn)M

1)點(diǎn)M坐標(biāo)為_____

2)若點(diǎn)Ey軸上,且BME是以BM為一腰的等腰三角形,則E點(diǎn)坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙中.

1)作出關(guān)于對稱的圖形

2)說明,可以由經(jīng)過怎樣的平移變換得到?

3)以所在的直線為軸,的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,試在軸上找一點(diǎn),使得最小(保留找點(diǎn)的作圖痕跡,描出點(diǎn)的位置,并寫出點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,若點(diǎn)從點(diǎn)出發(fā)以/的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以/的速度向點(diǎn)運(yùn)動(dòng),設(shè)、分別從點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為

1)求、的長(用含的式子表示)

2)當(dāng)為何值時(shí),是以為底邊的等腰三角形?

3)當(dāng)為何值時(shí),//?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)村莊A、B在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向AB兩村送自來水.鋪設(shè)水管的工程費(fèi)用為每千米20000元,請你在CD上選擇水廠位置O,使鋪設(shè)水管的費(fèi)用最省,并求出鋪設(shè)水管的總費(fèi)用W

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點(diǎn)A(﹣2,2),過點(diǎn)A作ABy軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對稱軸,點(diǎn)B經(jīng)軸對稱變換得到的點(diǎn)B'在此反比例函數(shù)的圖象上,則t的值是(。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半圓O中,AB是直徑,AB=13,點(diǎn)C是半圓O上一點(diǎn),AC=12,弦AD平分∠BAC,則sinDAB=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B在直線x=3上,直線x=3x軸交于點(diǎn)C

(1)求拋物線的解析式;

(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒個(gè)單位長度的速度沿線段AB向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長度的速度沿線段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P,Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).以PQ為邊作矩形PQNM,使點(diǎn)N在直線x=3上.

①當(dāng)t為何值時(shí),矩形PQNM的面積最?并求出最小面積;

②直接寫出當(dāng)t為何值時(shí),恰好有矩形PQNM的頂點(diǎn)落在拋物線上.

查看答案和解析>>

同步練習(xí)冊答案