【題目】為弘揚(yáng)中華傳統(tǒng)文化。某校開展雙剛進(jìn)課常的活動(dòng)。該校隨機(jī)抽取部分學(xué)生,按四個(gè)類別:表示很喜歡" 表示喜歡”,表示"一般”,表示"不喜歡”.調(diào)查他們對漢劇的喜愛情況將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,解決下列問題:

扇形統(tǒng)計(jì)圖中.類所對應(yīng)的扇形圓心角的大小為 ;

請通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖:

該校共有名學(xué)生.估計(jì)該校表示很喜歡類的學(xué)生有多少人?

【答案】見解析;

【解析】

(1)利用乘以B類所占百分比即可;(2)利用A,BD的總?cè)藬?shù)以及所占的百分比可得答案;(3)利用樣本的百分率估計(jì)總體即可得到答案.

: 抽取的學(xué)生人數(shù): ()

扇形統(tǒng)計(jì)圖中,類所對應(yīng)的扇形圓心角的大小為

類人數(shù): ()

補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示:

()

估計(jì)該校表示很喜歡類的學(xué)生有

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC為等邊三角形,點(diǎn)OAB邊上一點(diǎn),且BO=2AO=4,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得△DEF,則圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線Gx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn);一次函數(shù))的圖像為直線

1)求A、B兩點(diǎn)的坐標(biāo);

2)當(dāng)1≤x≤2時(shí),,試說明:拋物線G的頂點(diǎn)不在直線上;

3)設(shè),直線與線段AC交于D點(diǎn),與y軸交于E點(diǎn),與拋物線G的對稱軸交于F 點(diǎn),當(dāng)A、C兩點(diǎn)到直線距離相等時(shí),是否存在整數(shù)n,使F點(diǎn)在直線BE的上方?若存在,求n的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù):34,44,5.若拿掉一個(gè)數(shù)據(jù)4,則發(fā)生變化的統(tǒng)計(jì)量是(

A.極差B.方差C.中位數(shù)D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在邊長為10的菱形ABCD中,cosB,點(diǎn)EBC邊上的中點(diǎn),點(diǎn)F為邊AB邊上一點(diǎn),連接EF,過點(diǎn)BEF的對稱點(diǎn)B′,

1)在圖(1)中,用無刻度的直尺和圓規(guī)作出點(diǎn)B′(不寫作法,保留痕跡);

2)當(dāng)△EFB′為等腰三角形時(shí),求折痕EF的長度.

3)當(dāng)B′落在AD邊的中垂線上時(shí),求BF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為2的正方形ABCD中,點(diǎn)EAD邊上的中點(diǎn),BF平分∠EBCCD于點(diǎn)F,過點(diǎn)FFGABBE于點(diǎn)H,則GH的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩個(gè)全等的等腰三角形如圖所示放置,其中頂角頂點(diǎn)(點(diǎn)A)重合在一起,連接BDCE,交于點(diǎn)F

1)求證:BDCE;

2)當(dāng)四邊形ABFE是平行四邊形時(shí),且AB2,∠BAC30°,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,ACO的切線,切點(diǎn)為A,BCO于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

1)試判斷直線DEO的位置關(guān)系,并說明理由.

2)若O半徑為2,∠B60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.

(1)求AB段山坡的高度EF;

(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)

查看答案和解析>>

同步練習(xí)冊答案