【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

【答案】B
【解析】解:∵拋物線與x軸有2個(gè)交點(diǎn),∴b2﹣4ac>0,所以①正確;
∵拋物線的對(duì)稱軸為直線x=1,
而點(diǎn)(﹣1,0)關(guān)于直線x=1的對(duì)稱點(diǎn)的坐標(biāo)為(3,0),
∴方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3,所以②正確;
∵x=﹣ =1,即b=﹣2a,
而x=﹣1時(shí),y=0,即a﹣b+c=0,
∴a+2a+c=0,所以③錯(cuò)誤;
∵拋物線與x軸的兩點(diǎn)坐標(biāo)為(﹣1,0),(3,0),
∴當(dāng)﹣1<x<3時(shí),y>0,所以④錯(cuò)誤;
∵拋物線的對(duì)稱軸為直線x=1,
∴當(dāng)x<1時(shí),y隨x增大而增大,所以⑤正確.
故選B.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦ABOC,劣弧AB的度數(shù)為120°,連接PB.

(1)求BC的長(zhǎng);

(2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x2﹣3x=0的解為( )
A.x=0
B.x=3
C.x1=0,x2=﹣3
D.x1=0,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用總長(zhǎng)為6米的鋁合金做成一個(gè)如圖所示的“日”字型窗框,設(shè)窗框的高度為x米,窗的透光面積(鋁合金所占面積忽略不計(jì))為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式(結(jié)果要化成一般形式);
(2)能否使窗的透光面積達(dá)到2平方米,如果能,窗的高度和寬度各是多少?如果不能,試說(shuō)明理由;
(3)窗的高度為多少時(shí),能使透光面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩地相距200km,快車速度為120 ,慢車速度為80 ,慢車從甲地出發(fā),快車從乙地出發(fā),

1)如果兩車同時(shí)出發(fā),相向而行,出發(fā)后幾時(shí)兩車相遇?相遇時(shí)離甲地多遠(yuǎn)?

2)如果兩車同時(shí)出發(fā),同向(從乙開始向甲方向)而行,出發(fā)后幾時(shí)兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別為59,則這個(gè)三角形的周長(zhǎng)是( 。

A. 19 B. 23 C. 1923 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ab,c是三角形ABC的三邊的長(zhǎng),且滿足a22b2c22b(ac)0,試判斷此三角形三邊的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=﹣3x+5的圖象不經(jīng)過(guò)的象限是( 。

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個(gè)矩形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證(
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2

查看答案和解析>>

同步練習(xí)冊(cè)答案