【題目】小宇想測量位于池塘兩端的A,B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A,B兩點的距離.

【答案】解:作AM⊥EF于點M,作BN⊥EF于點N,如右圖所示,

由題意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,

∴CM= 米,

DN= 米,

∴AB=CD+DN﹣CM=100+20 ﹣60=(40+20 )米,

即A、B兩點的距離是(40+20 )米.


【解析】根據(jù)題意添加輔助線作AM⊥EF于點M,作BN⊥EF于點N,將所要解決的問題轉(zhuǎn)化到直角三角形中求解?芍狝M=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,然后在Rt△ACM和Rt△BDN中,利用解直角三角形分別求出CM、DN,即可求出A、B兩點的距離。
【考點精析】本題主要考查了特殊角的三角函數(shù)值和解直角三角形的相關(guān)知識點,需要掌握分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列全國各地地鐵標志圖中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,的平分線與AB的垂直平分線交于點O,將沿EF折疊,若點C與點O恰好重合,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某體育用品商店,購買50根跳繩和80個毽子共用1120元,購買30根跳繩和50個毽子共用680.

1)跳繩、毽子的單價各是多少元?

2)該店在元旦節(jié)期間開展促銷活動,所有商品按同樣的折數(shù)打折銷售.節(jié)日期間購買100根跳繩和100個毽子只需1700元,該店的商品按原價的幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC是等邊三角形,點D是射線BC上的一個動點(點D不與點BC重合),△ADE是以AD為邊的等邊三角形,過點EBC的平行線,分別交射線AB、AC于點FG,連接BE

1)如圖(a)所示,當點D在線段BC上時.

①求證:△AEB≌△ADC;

②探究四邊形BCGE是怎樣特殊的四邊形?并說明理由;

2)如圖(b)所示,當點DBC的延長線上時,直接寫出(1)中的兩個結(jié)論是否成立;

3)在(2)的情況下,當點D運動到什么位置時,四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你能比較的大小嗎?為了解決這個問題,先把問題一般化.即比較的大小(整數(shù)n≥1).然后,從分析n=1,n=2 n=3,……這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納、猜想,得出結(jié)論.

1)通過計算,比較下列①到⑥各組中兩個數(shù)的大。

2)從(1)小題的結(jié)果歸納,請猜想的大小關(guān)系:

3)根據(jù)上面歸納猜想到的一般結(jié)論,可以得到:

_______ (填“>”、“=”或“<)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(﹣3,0)、B(1,0)兩點,與y軸交于點C,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線PE,垂足點為E,連接AE.

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當S取到最大值時,過點P作x軸的垂線PF,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為點P′,求出P′的坐標,并判斷P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為貫徹落實云南省教育廳提出的“三生教育”,在母親節(jié)來臨之際,某校團委組織了以“珍愛生命,學會生存,感恩父母”為主題的教育活動,在學校隨機調(diào)查了50名同學平均每周在家做家務的時間,統(tǒng)計并制作了如下的頻數(shù)分布和扇形統(tǒng)計圖:

組別

做家務的時間

頻數(shù)

頻率

A

1≤t<2

3

0.06

B

2≤t<4

20

0.40

C

4≤t<6

A

0.30

D

6≤t<8

8

B

E

t≥8

4

0.08

根據(jù)上述信息回答下列問題:

(1)a= , b=;
(2)在扇形統(tǒng)計圖中,B組所占圓心角的度數(shù)為;
(3)全校共有2000名學生,估計該校平均每周做家務時間不少于4小時的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=20°,則∠OCD等于( )

A.20°
B.40°
C.65°
D.70°

查看答案和解析>>

同步練習冊答案