【題目】如圖,以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=20°,則∠OCD等于( )

A.20°
B.40°
C.65°
D.70°

【答案】C
【解析】解:連接OD,

∵∠DAB=20°,

∴∠BOD=2∠DAB=40°,

∴∠COD=90°﹣40°=50°,

∵OC=OD,

∴∠OCD=∠ODC= (180°﹣∠COD)=65°,

所以答案是:C.

【考點精析】關于本題考查的圓心角、弧、弦的關系和圓周角定理,需要了解在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小宇想測量位于池塘兩端的A,B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A,B兩點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖案中,既是軸對稱圖形又是中心對稱圖形的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用14500元購進甲、乙兩種礦泉水共500箱,礦泉水的成本價與銷售價如表(二)所示:

類別

成本價(元/箱)

銷售價(元/箱)

25

35

35

48

求:(1)購進甲、乙兩種礦泉水各多少箱?

(2)該商場售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:已知方程a22a1=012bb2=0ab≠1,求的值.

解:由a22a1=012bb2=0,

可知a≠0,b≠0,

又∵ab≠1,.

12bb2=0可變形為

根據(jù)a22a1=0的特征.

是方程x22x1=0的兩個不相等的實數(shù)根,

,即.

根據(jù)閱讀材料所提供的方法,完成下面的解答.

已知:3m27m2=0,2n2+7n3=0mn≠1,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“龜兔賽跑”的故事同學們都聽過,圖中的線段OD和折線OABC表示龜兔賽跑時路程與時間的關系,請根據(jù)圖中的信息,解決下列問題:

(1)填空:折線OABC表示賽跑過程中_________(填“兔子”或“烏龜”)的路程與時間的關系,賽跑的全程是_______米.

(2)兔子在起初每分鐘跑多少米?烏龜每分鐘爬多少米?

(3)烏龜用了多少分鐘追上了正在睡覺的兔子?

(4)兔子醒來后以400/分鐘的速度跑向終點,結果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BECE分別為ABC的內角平分線和外角平分線,BEAC于點H,CF平分∠ACBBE于點F連接AE.則下列結論:①∠ECF=90°;②AE=CE;③;④∠BAC=2BEC;⑤∠AEH=BCF,正確的個數(shù)為(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明設計的過直線外一點作這條直線的平行線的尺規(guī)作圖過程.

已知:如圖 ,直線 及直線 外一點

求作:直線 ,使得

作法:如圖

①在直線 上取一點 ,連接 ;

②作 的平分線 ;

③以點 為圓心, 長為半徑畫弧,交射線 于點 ;

④作直線

所以直線 就是所求作的直線.根據(jù)小明設計的尺規(guī)作圖過程.

1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:

平分 ,

,

,

____________________)(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+1x軸,y軸分別交于B,A兩點,動點P在線段AB上移動,以P為頂點作OPQ=45°x軸于點Q

1)求點A和點B的坐標;

2)比較AOPBPQ的大小,說明理由.

3)是否存在點P,使得OPQ是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案