【題目】如圖,在△ABC,AB=AC,∠DBC=15°,AB的垂直平分線MNAC于點D,則∠A=____.

【答案】50°

【解析】

由已知易得AD=BD,從而可得∠A=∠ABD,設∠A=x,則可得∠ABC=x+15,由AB=AC可得∠C=∠ABC=x+15,這樣在△ABC中由三角形內(nèi)角和為180°可得方程x+x+15+x+15=180,解此方程即可得到∠A的度數(shù).

∵AB的垂直平分線MNAC于點D,

∴AD=BD,

∴∠ABD=∠A,

∠A=x,∠ABD=x,

∠ABC=∠ABD+∠DBC=x+15,

∵AB=AC,

∴∠ACB=∠ABC=x+15,

∵∠A+∠ACB+∠ABC=180°,

∴x+x+15+x+15=180°,解得:x=50°,

∴∠A=50°.

故答案為:50°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣ x2+bx+c與x軸分別交于點A(﹣2,0)、B(4,0),與y軸交于點C.
(1)求拋物線解析式;
(2)求△CAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面里,梯形ABCD各頂點的位置如圖所示,圖中每個小正方形方格的邊長為1個單位長度.

(1)求梯形ABCD的面積;

(2)如果把梯形ABCD在坐標平面里先向右平移1個單位,然后向下平移2個單位得到梯形A1B1C1D1,求新頂點A1,B1,C1,D1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,圓M經(jīng)過原點O,且與x軸、y軸分別相交于A(﹣8,0),B(0,﹣6)兩點.

(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;
(3)設(2)中的拋物線交x軸于D、E兩點,在拋物線上是否存在點P,使得SPDE= SABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).

(1)證明:當旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;

(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;

(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度,格點三角形(頂點是網(wǎng)絡線的交點的三角形)ABC的頂點A,B的坐標分別為(-4,5),(-1,3)

(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;

(2)請作出△ABC關于y軸對稱的;

(3)直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AB:BC:CA=3:4:5,且周長為36cm,點P從點A開始沿AB邊向點B以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動;如果同時出發(fā),則過3秒時,求BPQ的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=x2+bx圖象的對稱軸為直線x=1,若關于x的一元二次方程x2+bx﹣t=0(t為實數(shù))在﹣1≤x≤3的范圍內(nèi)有解,則t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小購買了一套經(jīng)濟適用房,地面結(jié)構(gòu)如圖所示(墻體厚度、地磚間隙都忽略不計,單位:米),他計劃給臥室鋪上木地板,其余房間都鋪上地磚.根據(jù)圖中的數(shù)據(jù),解答下列問題:(結(jié)果用含x、y的代數(shù)式表示)

(1)求整套住房需要鋪多少平方米的地磚?

(2)求廳的面積比其余房間的總面積多多少平方米?

查看答案和解析>>

同步練習冊答案