【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.

(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).

【答案】
(1)解:∵OA平分∠EOC,

∴∠AOC= ∠EOC= ×70°=35°,

∴∠BOD=∠AOC=35°.


(2)解:設(shè)∠EOC=2x,∠EOD=3x,根據(jù)題意得2x+3x=180°,解得x=36°,

∴∠EOC=2x=72°,

∴∠AOC= ∠EOC= ×72°=36°,

∴∠BOD=∠AOC=36°.


【解析】(1)由OA平分∠EOC, 可求出∠AOC的度數(shù),再由對頂角相等可得∠BOD的度數(shù);
(2)設(shè)∠EOC=2x,∠EOD=3x,根據(jù)平角的定義可求出x的值,進而得到∠EOC的度數(shù),與(1)同理可求出∠BOD的度數(shù).
【考點精析】利用角的平分線和角的運算對題目進行判斷即可得到答案,需要熟知從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;角之間可以進行加減運算;一個角可以用其他角的和或差來表示.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列說法錯誤的是( )

A.若a∥b,b∥c,則a∥c
B.若∠1=∠2,則a∥c
C.若∠3=∠2,則b∥c
D.若∠3+∠5=180°,則a∥c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.

(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的內(nèi)角和為1080°,則這個多邊形的邊數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠BAC、∠ABC的平分線相交于點D,DE⊥BC,DF⊥AC,垂足分別為E、F.問四邊形CFDE是正方形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC= , 若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=x﹣2的圖象經(jīng)過點( 。

A. (﹣2,0) B. (0,0) C. (0,2) D. (0,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形的邊長為2,建立合適的直角坐標系,寫出各個頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.3a+2b=5ab
B.a3a2=a6
C.a3÷a3=1
D.(3a)2=3a2

查看答案和解析>>

同步練習冊答案