【題目】某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1.在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m寬的空地,其它三側(cè)內(nèi)墻各保留1m寬的通道.當(dāng)矩形溫室的長與寬各為多少時,蔬菜種植區(qū)域的面積是288m2?
【答案】解法一:設(shè)矩形溫室的寬為xm,則長為2xm.根據(jù)題意,得
(x﹣2)(2x﹣4)=288.
解這個方程,得x1=﹣10(不合題意,舍去),x2=14.
所以x=14,2x=2×14=28.
答:當(dāng)矩形溫室的長為28m,寬為14m時,蔬菜種植區(qū)域的面積是288m2.
解法二:設(shè)矩形溫室的長為xm,則寬為xm.根據(jù)題意,得
(x﹣2)(x﹣4)=288.
解這個方程,得x1=﹣20(不合題意,舍去),x2=28.
所以x=28,x=×28=14.
答:當(dāng)矩形溫室的長為28m,寬為14m時,蔬菜種植區(qū)域的面積是288m2.
【解析】本題有多種解法.設(shè)的對象不同所列的一元二次方程不同.一般情況下當(dāng)兩個量之比為a:b時,則設(shè)它們分別為ax和bx.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于x的方程x2+2x-k=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)若x1,x2是這個方程的兩個實數(shù)根,求的值;
(3)根據(jù)(2)的結(jié)果你能得出什么結(jié)論?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是矩形ABCD內(nèi)部的一定點,M是AB邊上一動點,連接MP并延長與矩形ABCD的一邊交于點N,連接AN.已知AB=6cm,設(shè)A,M兩點間的距離為xcm,M,N兩點間的距離為y1cm,A,N兩點間的距離為y2cm.小欣根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.下面是小欣的探究過程,請補充完整;
(1)按照如表中自變量x的值進行取點、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 6.30 | 5.40 |
| 4.22 | 3.13 | 3.25 | 4.52 |
y2/cm | 6.30 | 6.34 | 6.43 | 6.69 | 5.75 | 4.81 | 3.98 |
(2)在同一平面直角坐標系xOy中,描出以補全后的表中各組對應(yīng)值所對應(yīng)的點(x,y1),并畫出函數(shù)y1的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△AMN為等腰三角形時,AM的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線MN表示一艘輪船的航行路線,從M到N的走向為南偏東30°,在M的南偏東60°方向上有一點A,A處到M處為100海里.
(1)求點A到航線MN的距離;
(2)在航線MN上有一點B,且∠MAB=15°,若輪船的速度為50海里/時,求輪船從M處到B處所用時間為多少小時?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于點A(1,0),點B(3,0),與y軸交于點C,點D是該拋物線的頂點,連接AD,BD.
(1)求△ABD的面積;
(2)點P是拋物線上的一動點,且點P在x軸上方,若△ABP的面積是△ABD面積的,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號召,我市某單位準備將院內(nèi)一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進出口的寬度應(yīng)為多少米?(注:所有小道進出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,將AB沿BM翻折,使點A落在BC上的點N處,BM為折痕,連接MN;再將CD沿CE翻折,使點D恰好落在MN上的點F處,CE為折痕,連接EF并延長交BM于點P,若AD=8,AB=5,則線段PE的長等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l和雙曲線y=(k>0)交于A、B兩點,P是線段AB上的點(不與A、B重合),過點A、B、P分別向x軸作垂線,垂足分別為C、D、E,連接OA、OB、OP,設(shè)△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3,則( )
A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=kx﹣4k+4與拋物線y=x2﹣x交于A、B兩點.
(1)直線總經(jīng)過定點,請直接寫出該定點的坐標;
(2)點P在拋物線上,當(dāng)k=﹣時,解決下列問題:
①在直線AB下方的拋物線上求點P,使得△PAB的面積等于20;
②連接OA,OB,OP,作PC⊥x軸于點C,若△POC和△ABO相似,請直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com