如圖,在直角梯形OABC中,AB∥OC,過點(diǎn)O、點(diǎn)B的直線解析式為y=
43
x,OA、AB是方程x2-14x+48=0的兩個(gè)根,OB=BC,D、E分別是線段OC、OB上的動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)O、點(diǎn)C不重合),且∠BDE=∠ABO,設(shè)CD=x,BE=y.
(1)求BC和OC的長;
(2)求y與x的函數(shù)關(guān)系式;
(3)是否存在x的值,使以點(diǎn)B、點(diǎn)D、點(diǎn)E為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出x的值;若不存在,請(qǐng)說明理由.
分析:(1)過點(diǎn)B作BM⊥OC于點(diǎn)M.先解方程x2-14x+48=0,得x1=6,x2=8,再根據(jù)直線OB的解析式為y=
4
3
x,求出BM=8,OM=6,則由勾股定理得到BC=OB=10,由等腰三角形三線合一的性質(zhì)得到OC=2OM=12;
(2)先由平行線的性質(zhì)及已知條件證出∠BOC=∠BCO,再結(jié)合三角形外角的性質(zhì)得到∠ODE=∠CBD,則△ODE∽△CBD,根據(jù)相似三角形對(duì)應(yīng)邊成比例即可求出y與x的函數(shù)關(guān)系式;
(3)由于∠BED>∠BOC=∠BDE,所以BD>BE,當(dāng)△BDE為等腰三角形時(shí),分兩種情況討論:①DE=DB,②EB=ED.這兩種情況,都可以根據(jù)△ODE∽△CBD,對(duì)應(yīng)線段成比例列出方程,求解即可.
解答:解:(1)解方程x2-14x+48=0,
得x1=6,x2=8.
過點(diǎn)B作BM⊥OC于點(diǎn)M,
又∵過點(diǎn)O、點(diǎn)B的直線解析式為y=
4
3
x
,
∴BM:OM=4:3,
∴BM=8,OM=6,
∴BC=OB=
62+82
=10
,OC=2OM=12;

(2)∵AB∥OC,∴∠ABO=∠BOC,
∵BO=BC,∴∠BOC=∠BCO,
∵∠BDE=∠ABO,∴∠BDE=∠BCO,
∵∠ODB=∠ODE+∠BDE=∠CBD+∠BCO,∴∠ODE=∠CBD,
∴△ODE∽△CBD,∴OD:CB=OE:CD,
∴(12-x):10=(10-y):x,
解得y=
1
10
x2-
6
5
x+10(0<x<12);

(3)存在x1=2,x2=
11
3
,使以點(diǎn)B、點(diǎn)D、點(diǎn)E為頂點(diǎn)的三角形為等腰三角形.理由如下:
∵∠BED>∠BOC=∠BDE,∴BD>BE,
當(dāng)△BDE為等腰三角形時(shí),分兩種情況:
①當(dāng)DE=DB時(shí),
∵△ODE∽△CBD,
∴OD:CB=DE:BD=1,
∴(12-x):10=1,
解得x=1;
②當(dāng)EB=ED時(shí),
∵△ODE∽△CBD,
∴OD:CB=OE:CD=DE:BD,
∴(12-x):10=(10-y):x=y:(12-x),
解得x=
11
3

故存在x1=2,x2=
11
3
,使以點(diǎn)B、點(diǎn)D、點(diǎn)E為頂點(diǎn)的三角形為等腰三角形.
點(diǎn)評(píng):本題主要考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì),勾股定理,一次函數(shù)的性質(zhì),綜合性較強(qiáng),難度中等.其中第(2)問證出△ODE∽△CBD是關(guān)鍵,第(3)問運(yùn)用分類討論思想是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,OA∥CB,A、B兩點(diǎn)的坐標(biāo)分別為A(15,0),B(10,12),動(dòng)點(diǎn)P、Q分別從O、B兩點(diǎn)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿BC向C運(yùn)動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線段OB、PQ相交于點(diǎn)D,過點(diǎn)D作DE∥OA,交AB于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)PQ運(yùn)精英家教網(wǎng)動(dòng)時(shí)間為t(單位:秒).
(1)當(dāng)t為何值時(shí),四邊形PABQ是等腰梯形,請(qǐng)寫出推理過程;
(2)當(dāng)t=2秒時(shí),求梯形OFBC的面積;
(3)當(dāng)t為何值時(shí),△PQF是等腰三角形?請(qǐng)寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形COAB中,CB∥OA,以O(shè)為原點(diǎn)建立直角坐標(biāo)系,A、C的坐標(biāo)分別為A精英家教網(wǎng)(10,0)、C(0,8),CB=4,D為OA中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的線路移動(dòng),速度為1個(gè)單位/秒,移動(dòng)時(shí)間為t秒.
(1)求AB的長,并求當(dāng)PD將梯形COAB的周長平分時(shí)t的值,并指出此時(shí)點(diǎn)P在哪條邊上;
(2)動(dòng)點(diǎn)P在從A到B的移動(dòng)過程中,設(shè)△APD的面積為S,試寫出S與t的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)幾秒后線段PD將梯形COAB的面積分成1:3的兩部分?求出此時(shí)點(diǎn)P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,OA、OC邊所在直線與x、y軸重合,BC∥OA,點(diǎn)B的坐標(biāo)為(6.4,4.8),對(duì)角線OB⊥OA.在線段OA、AB上有動(dòng)點(diǎn)E、D,點(diǎn)E以每秒2厘米的速度在線段OA上從點(diǎn)O向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)D以每秒1厘米的速度在線段AB上從點(diǎn)A向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)點(diǎn)E到達(dá)點(diǎn)A時(shí),點(diǎn)D同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒),
(1)求線段AB所在直線的解析式;
(2)設(shè)四邊形OEDB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的t的取值范圍;
(3)在運(yùn)動(dòng)過程中,存不存在某個(gè)時(shí)刻,使得以A、E、D為頂點(diǎn)的三角形與△ABO相似,若存在求出這個(gè)時(shí)刻t,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江模擬)已知,如圖,在直角梯形COAB中,CB∥OA,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C的坐標(biāo)分別為A(10,0)、B(4,8)、C(0,8),D為OA的中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線移動(dòng),速度為每秒1個(gè)單位,移動(dòng)時(shí)間記為t秒.
(1)求過點(diǎn)O、B、A三點(diǎn)的拋物線的解析式;
(2)求AB的長;若動(dòng)點(diǎn)P在從A到B的移動(dòng)過程中,設(shè)△APD的面積為S,寫出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(3)動(dòng)點(diǎn)P從A出發(fā),幾秒鐘后線段PD將梯形COAB的面積分成1:3兩部分?求出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(1,2),C(3,0).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度移動(dòng).過P點(diǎn)作PQ⊥直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t≤7),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)寫出點(diǎn)B的坐標(biāo):
(3,2)
(3,2)

(2)當(dāng)t=7時(shí),求直線PQ的解析式,并判斷點(diǎn)B是否在直線PQ上;
(3)求S關(guān)于t的函數(shù)關(guān)系式;
(4)連接AC.是否存在t,使得PQ分△ABC的面積為1:3?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案