【題目】如圖,已知拋物線與軸交于、兩點,與軸交于點

1)求拋物線的解析式;

2)點是第一象限內(nèi)拋物線上的一個動點(與點、不重合),過點軸于點,交直線于點,連接、.設點的橫坐標為,的面積為.求關于的函數(shù)解析式及自變量的取值范圍,并求出的最大值;

3)已知為拋物線對稱軸上一動點,若是以為直角邊的直角三角形,請直接寫出點的坐標.

【答案】1;(2,當時,有最大值,最大值;(3,

【解析】

1)由拋物線與x軸的兩個交點坐標可設拋物線的解析式為y=ax+1)(x-3),將點C0,3)代入拋物線解析式中即可得出關于a一元一次方程,解方程即可求出a的值,從而得出拋物線的解析式;

2)設直線BC的函數(shù)解析式為y=kx+b.結合點B、點C的坐標利用待定系數(shù)法求出直線BC的函數(shù)解析式,再由點D橫坐標為m找出點D、點E的坐標,結合兩點間的距離公式以及三角形的面積公式求出函數(shù)解析式,利用配方法將S關于m的函數(shù)關系式進行變形,從而得出結論;

3)先求出對稱軸,設M(1y),然后分分BM為斜邊和CM為斜邊兩種情況求解即可;

解:(1)∵拋物線與x軸交于A-10)、B3,0)兩點,

∴設拋物線的解析式為y=ax+1)(x-3),

又∵點C0,3)在拋物線圖象上,

3=a×0+1×0-3),解得:a=-1

∴拋物線解析式為y=-x+1)(x-3=-x2+2x+3

∴拋物線解析式為

2)設直線的函數(shù)解析式為,

直線過點,

,解得,

,

,

,

,

時,有最大值,最大值;

3)∵,

∴對稱軸為直線x=1,

M(1y),

CM2=1+(y-3)2=y2-6y+10

BM2=y2+(1-3)2=y2+4,

BC2=9+9=18.

BM為斜邊時,

y2-6y+10+18= y2+4,

解得

y=4

此時M(1,4);

CM為斜邊時,

y2+4+18= y2-6y+10

解得

y=-2,

此時M(1-2);

綜上可得點的坐標為,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】汽車剎車后,還會繼續(xù)向前滑行一段距離,這段距離稱為剎車距離剎車距離ym)與剎車時的車速xkm/h)的部分關系如表:

剎車時的車速

0

50

100

150

200

剎車距離

0

5.5

21

46.5

82

1)求出yx之間的函數(shù)關系式.

2)一輛車在限速120km/h的高速公路上行駛時出了事故,事后測得它的剎車距離為40.6m,問:該車在發(fā)生事故時是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,點D在邊BC上,AEBC,BEADAC分別相交于點F、G,

1)求證:△CAD∽△CBG;

2)聯(lián)結DG,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,將∠ABC繞點A按逆時針方向旋轉(zhuǎn)一定角度后,BC的對應邊B'C'CD邊于點G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則

=__(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】消費者在某火鍋店飯后買單時可以參與一個抽獎游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費者去翻紙牌.

1)現(xiàn)小楊有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎,她從中隨機翻開一張紙牌,小楊獲獎的概率是________

2)如糶小楊、小月都有翻兩張牌的機會,小楊先翻一張,放回后再翻一張;小月同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們誰獲獎的機會更大些?通過畫樹狀圖或列表法分析說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:方程cx2+bx+a0是一元二次方程ax2+bx+c0的倒方程.

1)已知x2x2+2x+c0的倒方程的解,求c的值;

2)若一元二次方程ax22x+c0無解,求證:它的倒方程也一定無解;

3)一元二次方程ax22x+c0a≠c)與它的倒方程只有一個公共解,它的倒方程只有一個解,求ac的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是平行四邊形ABCD的對角線,DEAB于點E,過點E的直線交BC于點G,且BGCG

1)求證:GDEG

2)若BDEG垂足為O,BO2,DO4,畫出圖形并求出四邊形ABCD的面積.

3)在(2)的條件下,以O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)△GDO,得到△GD'O,點G′落在BC上時,請直接寫出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點,與y軸交于點C,連接AB,AC,BC.

求拋物線的表達式;

求證:AB平分;

拋物線的對稱軸上是否存在點M,使得是以AB為直角邊的直角三角形,若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD△ABC的角平分線,點E位于邊BC上,已知BDBABE的比例中項.

(1)求證:CDE=ABC;

(2)求證:ADCD=ABCE.

查看答案和解析>>

同步練習冊答案