【題目】如圖,已知拋物線與軸交于、兩點,與軸交于點.
(1)求拋物線的解析式;
(2)點是第一象限內(nèi)拋物線上的一個動點(與點、不重合),過點作軸于點,交直線于點,連接、.設點的橫坐標為,的面積為.求關于的函數(shù)解析式及自變量的取值范圍,并求出的最大值;
(3)已知為拋物線對稱軸上一動點,若是以為直角邊的直角三角形,請直接寫出點的坐標.
【答案】(1);(2),當時,有最大值,最大值;(3),
【解析】
(1)由拋物線與x軸的兩個交點坐標可設拋物線的解析式為y=a(x+1)(x-3),將點C(0,3)代入拋物線解析式中即可得出關于a一元一次方程,解方程即可求出a的值,從而得出拋物線的解析式;
(2)設直線BC的函數(shù)解析式為y=kx+b.結合點B、點C的坐標利用待定系數(shù)法求出直線BC的函數(shù)解析式,再由點D橫坐標為m找出點D、點E的坐標,結合兩點間的距離公式以及三角形的面積公式求出函數(shù)解析式,利用配方法將S關于m的函數(shù)關系式進行變形,從而得出結論;
(3)先求出對稱軸,設M(1,y),然后分分BM為斜邊和CM為斜邊兩種情況求解即可;
解:(1)∵拋物線與x軸交于A(-1,0)、B(3,0)兩點,
∴設拋物線的解析式為y=a(x+1)(x-3),
又∵點C(0,3)在拋物線圖象上,
∴3=a×(0+1)×(0-3),解得:a=-1.
∴拋物線解析式為y=-(x+1)(x-3)=-x2+2x+3.
∴拋物線解析式為;
(2)設直線的函數(shù)解析式為,
∵直線過點,,
∴,解得,
∴,
設,,
∴,
∴,
∵,
∴當時,有最大值,最大值;
(3)∵,
∴對稱軸為直線x=1,
設M(1,y),
則CM2=1+(y-3)2=y2-6y+10,
BM2=y2+(1-3)2=y2+4,
BC2=9+9=18.
當BM為斜邊時,
則y2-6y+10+18= y2+4,
解得
y=4,
此時M(1,4);
當CM為斜邊時,
y2+4+18= y2-6y+10,
解得
y=-2,
此時M(1,-2);
綜上可得點的坐標為,.
科目:初中數(shù)學 來源: 題型:
【題目】汽車剎車后,還會繼續(xù)向前滑行一段距離,這段距離稱為“剎車距離”剎車距離y(m)與剎車時的車速x(km/h)的部分關系如表:
剎車時的車速 | 0 | 50 | 100 | 150 | 200 |
剎車距離 | 0 | 5.5 | 21 | 46.5 | 82 |
(1)求出y與x之間的函數(shù)關系式.
(2)一輛車在限速120km/h的高速公路上行駛時出了事故,事后測得它的剎車距離為40.6m,問:該車在發(fā)生事故時是否超速行駛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,點D在邊BC上,AE∥BC,BE與AD、AC分別相交于點F、G, .
(1)求證:△CAD∽△CBG;
(2)聯(lián)結DG,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,將∠ABC繞點A按逆時針方向旋轉(zhuǎn)一定角度后,BC的對應邊B'C'交CD邊于點G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則
=__(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】消費者在某火鍋店飯后買單時可以參與一個抽獎游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費者去翻紙牌.
(1)現(xiàn)小楊有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎,她從中隨機翻開一張紙牌,小楊獲獎的概率是________.
(2)如糶小楊、小月都有翻兩張牌的機會,小楊先翻一張,放回后再翻一張;小月同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們誰獲獎的機會更大些?通過畫樹狀圖或列表法分析說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:方程cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.
(1)已知x=2是x2+2x+c=0的倒方程的解,求c的值;
(2)若一元二次方程ax2﹣2x+c=0無解,求證:它的倒方程也一定無解;
(3)一元二次方程ax2﹣2x+c=0(a≠c)與它的倒方程只有一個公共解,它的倒方程只有一個解,求a和c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是平行四邊形ABCD的對角線,DE⊥AB于點E,過點E的直線交BC于點G,且BG=CG.
(1)求證:GD=EG.
(2)若BD⊥EG垂足為O,BO=2,DO=4,畫出圖形并求出四邊形ABCD的面積.
(3)在(2)的條件下,以O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)△GDO,得到△G′D'O,點G′落在BC上時,請直接寫出G′E的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點,與y軸交于點C,連接AB,AC,BC.
求拋物線的表達式;
求證:AB平分;
拋物線的對稱軸上是否存在點M,使得是以AB為直角邊的直角三角形,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com