【題目】如圖,在矩形ABCD中,將∠ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)一定角度后,BC的對(duì)應(yīng)邊B'C'交CD邊于點(diǎn)G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則
=__(結(jié)果保留根號(hào)).
【答案】
【解析】
解:連接AC,AG,AC',由旋轉(zhuǎn)可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴,∴△ABB'∽△ACC',∴
=
,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=
AB',設(shè)AB=AB'=x,則AG=
x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x﹣4)2=(
x)2,解得x1=5,x2=﹣13(舍去),∴AB=5,∴Rt△ABC中,AC=
=
=
,∴
=
=
.故答案為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2+bx+c與直線(xiàn)y=x交于(1,1)和(3,3)兩點(diǎn),現(xiàn)有以下結(jié)論:①b2﹣4c>0;②3b+c+6=0;③當(dāng)x2+bx+c>時(shí),x>2;④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0,其中正確的序號(hào)是( �。�
A. ①②④B. ②③④C. ②④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是數(shù)值轉(zhuǎn)換機(jī)的示意圖,小明按照其對(duì)應(yīng)關(guān)系畫(huà)出了y與x的函數(shù)圖象(如圖):
(1)分別寫(xiě)出當(dāng)0≤x≤4與x>4時(shí),y與x的函數(shù)關(guān)系式:
(2)求出所輸出的y的值中最小一個(gè)數(shù)值;
(3)寫(xiě)出當(dāng)x滿(mǎn)足什么范圍時(shí),輸出的y的值滿(mǎn)足3≤y≤6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑AD交BC于點(diǎn)E,延長(zhǎng)AD至點(diǎn)F,使DF=2OD,連接FC并延長(zhǎng)交過(guò)點(diǎn)A的切線(xiàn)于點(diǎn)G,且滿(mǎn)足AG∥BC,連接OC,若cos∠BAC=,BC=6.
(1)求證:∠COD=∠BAC;
(2)求⊙O的半徑OC;
(3)求證:CF是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒3cm的速度向定點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒2cm的速度向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<),連接MN.
(1)若△BMN與△ABC相似,求t的值;
(2)連接AN,CM,若AN⊥CM,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,
,
,點(diǎn)
從點(diǎn)
沿邊
,
勻速運(yùn)動(dòng)到點(diǎn)
,過(guò)點(diǎn)
作
交
于點(diǎn)
,線(xiàn)段
,
,
,則能夠反映
與
之間函數(shù)關(guān)系的圖象大致是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)與軸交于
、
兩點(diǎn),與
軸交于點(diǎn)
.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)是第一象限內(nèi)拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)
、
不重合),過(guò)點(diǎn)
作
軸于點(diǎn)
,交直線(xiàn)
于點(diǎn)
,連接
、
.設(shè)點(diǎn)
的橫坐標(biāo)為
,
的面積為
.求
關(guān)于
的函數(shù)解析式及自變量
的取值范圍,并求出
的最大值;
(3)已知為拋物線(xiàn)對(duì)稱(chēng)軸上一動(dòng)點(diǎn),若
是以
為直角邊的直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車(chē)因其便捷環(huán)保深受人們喜愛(ài),成為日常短途代步與健身運(yùn)動(dòng)首選.如圖1是某品牌自行車(chē)的實(shí)物圖,圖2是它的簡(jiǎn)化示意圖.經(jīng)測(cè)量,車(chē)輪的直徑為,中軸軸心
到地面的距離
為
,后輪中心
與中軸軸心
連線(xiàn)與車(chē)架中立管
所成夾角
,后輪切地面
于點(diǎn)
.為了使得車(chē)座
到地面的距離
為
,應(yīng)當(dāng)將車(chē)架中立管
的長(zhǎng)設(shè)置為_____________
.
(參考數(shù)據(jù):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)y=2x和函數(shù)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,若△AOE的面積為4,P是坐標(biāo)平面上的點(diǎn),且以點(diǎn)B、O、E、P為頂點(diǎn)的四邊形是平行四邊形,則滿(mǎn)足條件的P點(diǎn)坐標(biāo)是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com