【題目】如圖,四邊形ABCD為⊙O的內接四邊形.延長AB與DC相交于點G,AO⊥CD,垂足為E,連接BD,∠GBC=50°,則∠DBC的度數為( )
A.50°
B.60°
C.80°
D.90°
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.
(1)求拋物線的函數解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,坐標原點O是菱形ABCD的對稱中心.邊AB與x軸平行,點B(1,-2),反比例函數 (k≠0)的圖象經過A,C兩點.
(1)求點C的坐標及反比例函數的解析式.
(2)直線BC與反比例函數圖象的另一交點為E,求以O,C,E為頂點的三角形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀與計算:請閱讀以下材料,并完成相應的任務. 古希臘的幾何學家海倫在他的《度量》一書中給出了利用三角形的三邊求三角形面積的“海倫公式”:如果一個三角形的三邊長分別為a、b、c,設p= ,則三角形的面積S= .
我國南宋著名的數學家秦九韶,曾提出利用三角形的三邊求面積的“秦九韶公式”(三斜求積術):如果一個三角形的三邊長分別為a、b、c,則三角形的面積S= .
(1)若一個三角形的三邊長分別是5,6,7,則這個三角形的面積等于 .
(2)若一個三角形的三邊長分別是 ,求這個三角形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【知識鏈接】 有理化因式:兩個含有根式的非零代數式相乘,如果它們的積不含有根式,那么這兩個代數式相互叫做有理化因式.
例如: 的有理化因式是 ;1﹣ 的有理化因式是1+ .
分母有理化:分母有理化又稱“有理化分母”,也就是把分母中的根號化去.指的是如果代數式中分母有根號,那么通常將分子、分母同乘以分母的有理化因式,達到化去分母中根號的目的.如:
= = ﹣1, = = ﹣ .
(1)【知識理解】 填空:2 的有理化因式是;
直接寫出下列各式分母有理化的結果:
① =;② = .
(2)【啟發(fā)運用】 計算: + + +…+ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知AB∥CD,∠ABE與∠CDE兩個角的角平分線相交于F.
(1)如圖1,若∠E=80°,求∠BFD的度數.
(2)如圖2:若∠ABM=∠ABF,∠CDM=∠CDF,寫出∠M和∠E之間的數量關系并證明你的結論.
(3)若∠ABM=∠ABF, ∠CDM=∠CDF, 設∠E=m°,直接用含有n、m°的代數式寫出∠M= (不寫過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點E(x0,y0),F(x2,y2),點M(x1,y1)是線段EF的中點,則, .在平面直角坐標系中有三個點A(1,-1),B(-1,-1),C(0,1),點P(0,2)關于A的對稱點為P1(即P,A,P1三點共線,且PA=P1A),P1關于B的對稱點為P2,P2關于C的對稱點為P3,按此規(guī)律繼續(xù)以A,B,C為對稱點重復前面的操作,依次得到P4,P5,P6,…,則點P2015的坐標是( )
A. (0,0) B. (0,2)
C. (2,-4) D. (-4,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一次數學活動課上,張明用17個邊長為1的小正方形搭成了一個幾何體,然后他請王亮用其他同樣的小正方體在旁邊再搭一個幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個無縫隙的大長方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個小立方體,王亮所搭幾何體的表面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com