【題目】閱讀與計算:請閱讀以下材料,并完成相應的任務. 古希臘的幾何學家海倫在他的《度量》一書中給出了利用三角形的三邊求三角形面積的“海倫公式”:如果一個三角形的三邊長分別為a、b、c,設p= ,則三角形的面積S=
我國南宋著名的數(shù)學家秦九韶,曾提出利用三角形的三邊求面積的“秦九韶公式”(三斜求積術):如果一個三角形的三邊長分別為a、b、c,則三角形的面積S=
(1)若一個三角形的三邊長分別是5,6,7,則這個三角形的面積等于
(2)若一個三角形的三邊長分別是 ,求這個三角形的面積.

【答案】
(1)解:p= = =9;S= = =6 .答:這個三角形的面積等于6
(2)解:S=

=

=

=

=

答:這個三角形的面積是

故答案為:6


【解析】(1)把a、b、c的長代入求出S2,再開方計算即可得解;(2)把a、b、c的長代入求出S2,再開方計算即可得解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計劃開鑿隧道A,B兩地直線貫通,經(jīng)測量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在“漢字聽寫”大賽中,準備一次性購買若干鋼筆和筆記本(每支鋼筆的價格相同,每本筆記本的價格相同)作為優(yōu)勝者的獎品,已知購買3支鋼筆和4本筆記本共需88元,購買4支鋼筆和5本筆記本共需114元.

(1)求購買一支鋼筆和一本筆記本各需多少元?

(2)學校準備購買鋼筆和筆記本共80件獎品,根據(jù)規(guī)定購買的總費用不能超過1200元,求最多可以購買多少支鋼筆?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點,連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在中,,過上一點于點,以為頂點,為一邊,作,另一邊于點

1)求證:四邊形為平行四邊形;

2)當點中點時,的形狀為

3)延長圖①中的到點使連接得到圖②,若判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A(a,0),C(0,c)且滿足:(a+6)2+0,長方形ABCO在坐標系中(如圖),點O為坐標系的原點.

(1)求點B的坐標.

(2)如圖1,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點O),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設MN兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

(3)如圖2,Ex軸負半軸上一點,且∠CBE=∠CEB,Fx軸正半軸上一動點,∠ECF的平分線CDBE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形.延長AB與DC相交于點G,AO⊥CD,垂足為E,連接BD,∠GBC=50°,則∠DBC的度數(shù)為( )

A.50°
B.60°
C.80°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, = = ,點E是點D關于AB的對稱點,M是AB上的一動點,下列結論:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結論中正確的個數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組:

請結合題意,完成本題的解答.

1)解不等式①,得 ,依據(jù)是:

2)解不等式③,得

3)把不等式①,②和③的解集在數(shù)軸上表示出來.

4)從圖中可以找出三個不等式解集的公共部分,得不等式組的解集

查看答案和解析>>

同步練習冊答案