【題目】在△ABC中,D,E分別是△ABC兩邊的中點,如果弧DE(可以是劣弧、優(yōu)弧或半圓)上的所有點都在△ABC的內部或邊上,則稱弧DE為△ABC的中內弧.例如,圖1中弧DE是△ABC其中的某一條中內弧.
(1)如圖2,在邊長為4的等邊△ABC中,D,E分別是AB,AC的中點.畫出△ABC的最長的中內弧DE,并直接寫出此時弧DE的長;
(2)在平面直角坐標系中,已知點A(2,6),B(0,0),C(t,0),在△ABC中,D,E分別是AB,AC的中點.
①若t=2,求△ABC的中內弧DE所在圓的圓心P的縱坐標的取值范圍;
②請寫出一個t的值,使得△ABC的中內弧DE所在圓的圓心P的縱坐標可以取全體實數(shù)值.
【答案】(1)圖詳見解析,;(2)①m≤或m≥3;②t=4.
【解析】
(1)如圖1中,由垂徑定理可知,圓心O在線段DE的垂直平分線上,當點O是△ABC的內心時,內弧最長,利用弧長公式計算即可.
(2)如圖2中,由垂徑定理可知,圓心一定在線段DE的垂直平分線上,DE的垂直平分線交DE于F,作DO′交DE的垂直平分線于點O′.
①設O′(,m)由三角形中內弧定義可知,圓心在線段DE上方射線FP上均可,可得m≥3.當O′D⊥OA時,在Rt△DFO′中,∵DF=,∠FDO′=30°,可得O′F=,推出O′(,),根據(jù)三角形中內弧的定義可知,圓心在點O′的下方(含點O′)時也符合要求,可得m≤.
②如圖3中,當△AOC是等邊三角形時,內弧DE所在圓的圓心P的縱坐標可以取全體實數(shù)值.此時t=.
解:(1)如圖1中,由垂徑定理可知,圓心O在線段DE的垂直平分線上,
∵△ABC是等邊三角形,
∴當點O是△ABC的內心時,內弧最長,
在Rt△OHC中,
∵CH=,∠OCH=30°,
∴OH=CHtan30°=2,
∵∠ADE=∠AEO=90°,∠DAE=60°,
∴∠DOE=120°,
∴的長==.
(2)①如圖2中,
如圖2中,由垂徑定理可知,圓心一定在線段span>DE的垂直平分線上,DE的垂直平分線交DE于F,
①當t=時,C(,0),A(,6),
∴D(,3),E(,6),F(,3),
設O′(,m)由三角形中內弧定義可知,圓心在線段DE上方射線FP上均可,∴m≥3
∵tan∠AOC==,
∴∠AOC=60°,
∵DE∥OC,
∴∠ADE=60°,
當O′D⊥OA時,在Rt△DFO′中,∵DF=,∠FDO′=30°,
∴O′F=,
∴O′(,),
根據(jù)三角形中內弧的定義可知,圓心在點O′的下方(含點O′)時也符合要求,
∴m≤,
綜上所述,m≤或m≥3.
②如圖3中,當△AOC是等邊三角形時,內弧DE所在圓的圓心P的縱坐標可以取全體實數(shù)值.此時t=4.
科目:初中數(shù)學 來源: 題型:
【題目】)甲乙兩人在相同條件下完成了5次射擊訓練,兩人的成績如圖所示.
(1)甲射擊成績的眾數(shù)為 環(huán),乙射擊成績的中位數(shù)為 環(huán);
(2)計算兩人射擊成績的方差;
(3)根據(jù)訓練成績,你認為選派哪一名隊員參賽更好,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為2,M、N分別為邊BC、CD上的動點,且∠MAN=45°
(1)猜想線段BM、DN、MN的數(shù)量關系并證明;
(2)若BM=CM,P是MN的中點,求AP的長;
(3)M、N運動過程中,請直接寫出△AMN面積的最大值 和最小值 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.
(1)求證:CF為⊙O的切線;
(2)填空:當∠CAB的度數(shù)為________時,四邊形ACFD是菱形.
【答案】30°
【解析】(1)連結OC,如圖,由于∠A=∠OCA,則根據(jù)三角形外角性質得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據(jù)平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據(jù)切線的判定定理得CF為⊙O的切線;
(2)根據(jù)三角形的內角和得到∠F=30°,根據(jù)等腰三角形的性質得到AC=CF,連接AD,根據(jù)平行線的性質得到∠DAF=∠F=30°,根據(jù)全等三角形的性質得到AD=AC,由菱形的判定定理即可得到結論.
答:
(1)證明:連結OC,如圖,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF為⊙O的切線;
(2)當∠CAB的度數(shù)為30°時,四邊形ACFD是菱形,理由如下:
∵∠A=30°,
∴∠COF=60°,
∴∠F=30°,
∴∠A=∠F,
∴AC=CF,
連接AD,
∵AB是⊙O的直徑,
∴AD⊥BD,
∴AD∥CF,
∴∠DAF=∠F=30°,
在△ACB與△ADB中,
,
∴△ACB≌△ADB,
∴AD=AC,
∴AD=CF,
∵AD∥CF,
∴四邊形ACFD是菱形。
故答案為:30°.
【題型】解答題
【結束】
22
【題目】經市場調查,某種商品在第x天的售價與銷量的相關信息如下表;已知該商品的進價為每件30元,設銷售該商品每天的利潤為y元.
(1)求出y與x的函數(shù)關系式
(2)問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=60°,P為它的內部一點,M為射線OA上一點,連接PM,以P為中心,將線段PM順時針旋轉120°,得到線段PN,并且點N恰好落在射線OB上.
(1)依題意補全圖1;
(2)證明:點P一定落在∠AOB的平分線上;
(3)連接OP,如果OP=2,判斷OM+ON的值是否變化,若發(fā)生變化,請求出值的變化范圍,若不變,請求出值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把“有兩條邊和其中一邊的對角對應相等的兩個三角形”叫做“同族三角形”,如圖1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,則△ABC和△ABD是“同族三角形”.
(1)如圖2,四邊形ABCD內接于圓,點C是弧BD的中點,求證:△ABC和△ACD是同族三角形;
(2)如圖3,△ABC內接于⊙O,⊙O的半徑為,AB=6,∠BAC=30°,求AC的長;
(3)如圖3,在(2)的條件下,若點D在⊙O上,△ADC與△ABC是非全等的同族三角形,AD>CD,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=a(x﹣1)(x﹣3)(a<0)的頂點為A,與y軸交于點C,過C作CB∥x軸交拋物線于點B,過點B作直線l⊥x軸,連結OA并延長,交l于點D,連結OB.
(1)當a=﹣2時,求線段OB的長.
(2)是否存在特定的a值,使得△OBD為等腰三角形?若存在,請寫出計算過程并求出a的值;若不存在,請說明理由.
(3)設△OBD的外心M的坐標為(m,n),求m與n的數(shù)量關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點和點,與軸交于點.
(1)求拋物線的解析式;
(2)若點為第二象限拋物線上一動點,連接,求面積的最大值,并求此時點的坐標.
(3)在拋物線上是否存在點使得為等腰三角形?若存在,請求出一共有幾個符合條件的點(簡要說明理由)并寫出其中一個點的坐標;若不存在這樣的點,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,DH⊥AB于點H,連接OH,∠CAD=20°,則∠DHO的度數(shù)是( 。
A.20°B.25°C.30°D.40°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com