【題目】在平面直角坐標(biāo)系中,一螞蟻從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方

向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位,其行走路線如下圖所示.

(1)填寫下列各點(diǎn)的坐標(biāo):A4( , )、A8( )、A12( , )

(2)寫出點(diǎn)A4n的坐標(biāo)(n是正整數(shù));

(3)指出螞蟻從點(diǎn)A100到點(diǎn)A101的移動(dòng)方向.

【答案】⑴A1(0,1) A3(1,0) A12(6,0)

⑵An(2n,0)

向上

【解析】

試題(1)在平面直角坐標(biāo)系中可以直接找出答案;

2)根據(jù)求出的各點(diǎn)坐標(biāo),得出規(guī)律;

3)點(diǎn)A100中的n正好是4的倍數(shù),根據(jù)第二問的答案可以分別得出點(diǎn)A100A101的坐標(biāo),所以可以得到螞蟻從點(diǎn)A100A101的移動(dòng)方向.

解:(1A10,1),A31,0),A1260);

2)當(dāng)n=1時(shí),A420),

當(dāng)n=2時(shí),A84,0),

當(dāng)n=3時(shí),A126,0),

所以A4n2n,0);

3)點(diǎn)A100中的n正好是4的倍數(shù),所以點(diǎn)A100A101的坐標(biāo)分別是A10050,0),A101的(50,1),所以螞蟻從點(diǎn)A100A101的移動(dòng)方向是從下向上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,點(diǎn)QAB邊上一點(diǎn),點(diǎn)FBC邊上一點(diǎn)連接DQ、DFQF.

(1)如圖1,若∠ADQ=FDQ,FQD=90°,求證:AQ=BQ;

(2)如圖2,在(1)的條件下,∠BAD=120°,對(duì)角線AC、BD相交于點(diǎn)P,以點(diǎn)P為頂點(diǎn)作∠MPN=60°,PMAB交于點(diǎn)M,PNAD交于點(diǎn)N,求證:DN+QM=AB;

(3)如圖3,在(1)(2)的條件下,延長NPBC于點(diǎn)E,延長CN到點(diǎn)K,使CK=CA,連接AK并延長和CD的延長線交于點(diǎn)T,若AM:DN=1:5,S四邊形MBEP=12,求線段DT的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1過點(diǎn)A(0,4)與點(diǎn)D(4,0),直線l2:y=x+1與x軸交于點(diǎn)C,兩直線l1,l2相交于點(diǎn)B.

(1)求直線l1的函數(shù)表達(dá)式;

(2)求點(diǎn)B的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們常見的炒菜鍋和鍋蓋都是拋物面,經(jīng)過鍋心和蓋心的縱斷面是由兩段拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”.鍋口直徑為6dm,鍋深3dm,鍋蓋高1dm(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標(biāo)系如圖1所示,如果把鍋縱斷面的拋物線記為C1 , 把鍋蓋縱斷面的拋物線記為C2

(1)求C1和C2的解析式;
(2)如圖2,過點(diǎn)B作直線BE:y= x﹣1交C1于點(diǎn)E(﹣2,﹣ ),連接OE、BC,在x軸上求一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的△PBC與△BOE相似,求出P點(diǎn)的坐標(biāo);

(3)如果(2)中的直線BE保持不變,拋物線C1或C2上是否存在一點(diǎn)Q,使得△EBQ的面積最大?若存在,求出Q的坐標(biāo)和△EBQ面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問題

(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?

(2)甲、乙兩家商場同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動(dòng),甲商場規(guī)定: 這兩種商品都打九折;乙商場規(guī)定:買一個(gè)暖瓶贈(zèng)送一個(gè)水杯。若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問選擇哪家商場購買更合算,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到△ADE,點(diǎn)B經(jīng)過的路徑為 ,則圖中陰影部分的面積為(
A. π
B. π
C. π
D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=2∠C,∠BAC的平分線AD交BC于D,E為AC上一點(diǎn),AE=AB,連接DE.

(1)求證:△ABD≌△AED;

(2)已知BD=5,AB=9,求AC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了對(duì)學(xué)生進(jìn)行愛國主義教育,某校組織學(xué)生去看演出,有甲乙兩種票,已知甲乙兩種票的單價(jià)比為4:3,單價(jià)和為42元.

(1)甲乙兩種票的單價(jià)分別是多少元?

(2)學(xué)校計(jì)劃拿出不超過750元的資金,讓七年級(jí)一班的36名學(xué)生首先觀看,且規(guī)定購買甲種票必須多于15張,有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A在數(shù)軸上,從點(diǎn)A出發(fā),沿?cái)?shù)軸向右移動(dòng)3個(gè)單位長度到達(dá)點(diǎn)C,點(diǎn)B所表示的有理數(shù)是5的相反數(shù),按要求完成下列各小題.

(1)請(qǐng)?jiān)跀?shù)軸上標(biāo)出點(diǎn)B和點(diǎn)C;

(2)求點(diǎn)B所表示的有理數(shù)與點(diǎn)C所表示的有理數(shù)的乘積;

(3)若將該數(shù)軸進(jìn)行折疊,使得點(diǎn)A和點(diǎn)B重合,則點(diǎn)C和數(shù)   所表示的點(diǎn)重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案