【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上,三個(gè)頂點(diǎn)的坐標(biāo)分別為.

1)將關(guān)于軸作軸對(duì)稱變換得,則點(diǎn)的坐標(biāo)為______.

2)將繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),則點(diǎn)的坐標(biāo)為______.

3)在(1)(2)的基礎(chǔ)上,圖中的,是中心對(duì)稱圖形,對(duì)稱中心的坐標(biāo)為______.

4)若以點(diǎn)、、為頂點(diǎn)的四邊形為菱形,直接寫出點(diǎn)的坐標(biāo)為______.

【答案】1;(2);(3);(4).

【解析】

1)根據(jù)軸對(duì)稱圖形的性質(zhì)可知點(diǎn)C的坐標(biāo)為(3-1);

2)根據(jù)旋轉(zhuǎn)變換圖形的性質(zhì)也可求出點(diǎn)C2的坐標(biāo);

3)成中心對(duì)稱,連續(xù)各對(duì)稱點(diǎn),連線的交點(diǎn)就是對(duì)稱中心,從而可以找出對(duì)稱中心的坐標(biāo);

4)根據(jù)菱形的判定進(jìn)行求解即可.

1)如圖,

點(diǎn)C1的坐標(biāo)為(3-1);

故答案為(3,-1);

2)點(diǎn)C2的坐標(biāo)為(-1,3),

故答案為(-13);

3)△A1B1C1與△A2B2C2成中心對(duì)稱,對(duì)稱中心的坐標(biāo)為;

故答案為;

4∵點(diǎn)DA、C、B為頂點(diǎn)的四邊形為菱形,

∴點(diǎn)D的坐標(biāo)為(4,3.

故答案為(4,3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠C=90°BC=8cm,AC=6cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC向點(diǎn)C2cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿CA向點(diǎn)A1cm/s的速度移動(dòng),如果P、Q分別從BC同時(shí)出發(fā),過多少秒時(shí),以CP、Q為頂點(diǎn)的三角形恰與ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.

(1)求該拋物線的解析式;

(2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求PBC周長的最小值;

(3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,ADF的面積為S.

求S與m的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn).

1)求、三點(diǎn)坐標(biāo);

2)求過、兩點(diǎn)的一次函數(shù)的解析式;

3)如果是線段上的動(dòng)點(diǎn),試求的面積之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn), 銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù),所調(diào)查的部分?jǐn)?shù)據(jù)如表:

銷售單價(jià)x(元)

65

70

80

銷售量y(件)

55

50

40

1)求出yx之間的函數(shù)表達(dá)式;

2)若該商場(chǎng)獲得利潤為W元,試寫出利潤W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤,最大利潤是多少?

3)銷售單價(jià)定為多少元時(shí),該商場(chǎng)獲得的利潤恰為500元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩組同時(shí)加工某種零件,甲組每小時(shí)加工80件,乙組加工的零件數(shù)量y(件)與時(shí)間x(小時(shí))為一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表所示.

x(小時(shí))

2

4

6

y(件)

50

150

250

1)求yx之間的函數(shù)關(guān)系式;

2)甲、乙兩組同時(shí)生產(chǎn),加工的零件合在一起裝箱,每滿340件裝一箱,零件裝箱的時(shí)間忽略不計(jì),求經(jīng)過多長時(shí)間恰好裝滿第1箱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ly=kx+4與拋物線y=x2交于點(diǎn)A(x1,y1),B(x2,y2).

(1)求:的值.

(2)過點(diǎn)(0,-4)作直線PQx軸,且過點(diǎn)AB分別作AMPQ于點(diǎn)M,BNPQ于點(diǎn)N,設(shè)直線ly=kx+4y軸于點(diǎn)F.求證:AF=AM=4+y1

(3)證明:+為定值,并求出該值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正ABC內(nèi)一點(diǎn),OA3OB4OC5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO,下列結(jié)論:①△BOA可以由BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)OO的距離為4;③∠AOB150°;④S四邊形AOBO63.其中正確的結(jié)論有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,DC8,AD6.

(1)如圖(1),點(diǎn)E在邊AD上且AE2,以點(diǎn)E為頂點(diǎn)作正方形EFGH,頂點(diǎn)F,H分別在矩形ABCD的邊AB,CD上,連接CG,求∠HCG的度數(shù);

(2)請(qǐng)從A、B兩題中任選一題解答,我選擇_____.

A.如圖(2),甲同學(xué)把矩形紙片ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形MPNQ,判斷并說明四邊形MPNQ的形狀.

B.如圖(3),乙同學(xué)把(1)中的正方形EFGH”改為菱形EFGH”,其余條件不變,此時(shí)點(diǎn)G落在矩形ABCD的外部,已知△CGH的面積是4,求菱形EFGH的邊長及面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案