【題目】已知二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn).

1)求、、三點(diǎn)坐標(biāo);

2)求過、兩點(diǎn)的一次函數(shù)的解析式;

3)如果是線段上的動(dòng)點(diǎn),試求的面積之間的關(guān)系式.

【答案】1、、;(2y=-x+6;(3S=-2x+120<x<6

【解析】

1)拋物線的解析式中,令x=0可求得C點(diǎn)坐標(biāo),令y=0可求得A、B的坐標(biāo);

2)已知了B、C的坐標(biāo),用待定系數(shù)法求解即可;

3)根據(jù)直線BC的解析式可用x表示出P點(diǎn)的縱坐標(biāo),以OA為底,P點(diǎn)縱坐標(biāo)的絕對(duì)值為高即可得到的面積,由此可求得Sx的函數(shù)關(guān)系式;

解:(1)當(dāng)時(shí),,解得:,,

點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;

當(dāng)時(shí),,點(diǎn)的坐標(biāo)為

2)設(shè)過,兩點(diǎn)的一次函數(shù)的解析式為,

,代入,得:

,解得:,

,兩點(diǎn)的一次函數(shù)的解析式為

3)過點(diǎn)軸,垂足為,如圖所示.

點(diǎn)的坐標(biāo)為,

點(diǎn)的坐標(biāo)為,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OF是∠MON的平分線,點(diǎn)A在射線OM上,PQ是直線ON上的兩動(dòng)點(diǎn),點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OFON交于點(diǎn)B、點(diǎn)C,連接AB、PB

1)如圖1,當(dāng)PQ兩點(diǎn)都在射線ON上時(shí),請(qǐng)直接寫出線段ABPB的數(shù)量關(guān)系;

2)如圖2,當(dāng)PQ兩點(diǎn)都在射線ON的反向延長(zhǎng)線上時(shí),線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請(qǐng)寫出證明過程;若不存在,請(qǐng)說明理由;

3)如圖3,MON=60°,連接AP,設(shè)=k,當(dāng)PQ兩點(diǎn)都在射線ON上移動(dòng)時(shí),k是否存在最小值?若存在,請(qǐng)直接寫出k的最小值;若不存在,請(qǐng)說明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明AOB≌△PQB即可解決問題;

2)存在.證明方法類似(1);

3)連接BQ.只要證明ABP∽△OBQ,即可推出=,由AOB=30°,推出當(dāng)BAOM時(shí), 的值最小,最小值為0.5,由此即可解決問題;

試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ

BC垂直平分OQBO=BQ,∴∠BOQ=∠BQO,OF平分MON∴∠AOB=∠BQO,OA=PQ,∴△AOB≌△PQBAB=PB

2)存在,理由:如圖2中,連接BQ

BC垂直平分OQBO=BQ,∴∠BOQ=∠BQO,OF平分MON,BOQ=∠FON∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,OA=PQ,∴△AOB≌△PQB,AB=PB

3)連接BQ

易證ABO≌△PBQ,∴∠OAB=BPQ,AB=PB,∵∠OPB+BPQ=180°,∴∠OAB+OPB=180°AOP+ABP=180°,∵∠MON=60°,∴∠ABP=120°,BA=BP,∴∠BAP=BPA=30°,BO=BQ,∴∠BOQ=BQO=30°,∴△ABP∽△OBQ, =,∵∠AOB=30°,當(dāng)BAOM時(shí), 的值最小,最小值為0.5k=0.5

點(diǎn)睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考?碱}型.

型】解答
結(jié)束】
28

【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+x+c上的一動(dòng)點(diǎn),過點(diǎn)P作PEx軸,垂足為E,交直線l于點(diǎn)F.

(1)試求該拋物線表達(dá)式;

(2)如圖(1),若點(diǎn)P在第三象限,四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);

(3)如圖(2),過點(diǎn)P作PHy軸,垂足為H,連接AC.

求證:ACD是直角三角形;

試問當(dāng)P點(diǎn)橫坐標(biāo)為何值時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與ACD相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙C經(jīng)過原點(diǎn)且與兩坐標(biāo)軸分別交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),M是圓上一點(diǎn),∠BMO120°,則⊙C的半徑為____,圓心C的坐標(biāo)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yx26x+m滿足以下條件:當(dāng)﹣2x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)8x9時(shí),它的圖象位于x軸的上方,則m的值為( 。

A.27B.9C.7D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1).

1)以O點(diǎn)為位似中心在y軸的左側(cè)將OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

2B點(diǎn)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是 C點(diǎn)的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)是 ;

3)在BC上有一點(diǎn)Pxy),按(1)的方式得到的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點(diǎn) E,交⊙O于點(diǎn)D,連接BD.

1)求證:BAD=CBD;

2)若∠AEB=125°,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上,三個(gè)頂點(diǎn)的坐標(biāo)分別為.

1)將關(guān)于軸作軸對(duì)稱變換得,則點(diǎn)的坐標(biāo)為______.

2)將繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),則點(diǎn)的坐標(biāo)為______.

3)在(1)(2)的基礎(chǔ)上,圖中的,是中心對(duì)稱圖形,對(duì)稱中心的坐標(biāo)為______.

4)若以點(diǎn)、、、為頂點(diǎn)的四邊形為菱形,直接寫出點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場(chǎng)部分平面圖如圖所示C,EA在同一直線上,DE,B在同一直線上,測(cè)得A處與E處的距離為80 m,C處與D處的距離為34 mC90°,ABE90°BAE30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;

(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m,設(shè)AD的長(zhǎng)為m,DC的長(zhǎng)為m。

1)求之間的函數(shù)關(guān)系式;

2)根據(jù)實(shí)際情況,對(duì)于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請(qǐng)說明理由;

3)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過26m,材料ADDC的長(zhǎng)都是整米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

同步練習(xí)冊(cè)答案