【題目】已如,在平面直角坐標(biāo)系中,點的坐標(biāo)為、點的坐標(biāo)為,點軸上,作直線.關(guān)于直線的對稱點剛好在軸上,連接.

1)寫出一點的坐標(biāo),并求出直線對應(yīng)的函數(shù)表達式;

2)點在線段上,連接、,當(dāng)是等腰直角三角形時,求點坐標(biāo);

3)如圖②,在(2)的條件下,點從點出發(fā)以每秒2個單位長度的速度向原點運動,到達點時停止運動,連接,過的垂線,交軸于點,問點運動幾秒時是等腰三角形.

【答案】1,2)點坐標(biāo)為,(3)點運動時間為1秒或秒或3.75.

【解析】

1)由勾股定理求出AB=10,即可求出A=10,從而可求出,設(shè)C0,m),在直角三角形中,運用勾股定理可求出m的值,從而確定點C的坐標(biāo),再利用待定系數(shù)法求出AC的解析式即可;

2)由垂直平分可證,過點軸于點軸于點,證明可得DE=DF,設(shè)Da,a)代入求解即可;

3)分三種情況:①當(dāng)時,②當(dāng)時,③當(dāng)時,分類討論即可得解:

1,

,

,

、關(guān)于直線的對稱,

垂直平分,

,

設(shè)點坐標(biāo)為,則,

,

中,,

,

,

坐標(biāo)為.

設(shè)直線對應(yīng)的函數(shù)表達式為,

代入,

,

解得,

直線對應(yīng)的函數(shù)關(guān)系是為

2垂直平分,

,

是等腰直角三角形,

過點軸于點,軸于點.

,

,

,

,

設(shè)點坐標(biāo)為,

把點代入,

,

坐標(biāo)為,

3)同(2)可得

①當(dāng)時,

軸,

運動時間為1.

②當(dāng)時,

,

運動時間為.

③當(dāng)時,

設(shè),則

中,,

運動時間為3.75.

綜上所述,點運動時間為1秒或秒或3.75.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊中,點是邊上一點.作射線,點關(guān)于射線的對稱點為點.連接并延長,交射線于點.

1)如圖,連接,

的數(shù)量關(guān)系是__________;

②設(shè),用表示的大;

2)如圖,用等式表示線段,,之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD切⊙O于點D,且BDOC,連接AC.

(1)求證:AC是⊙O的切線;

(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文化,源遠流長,在文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中進行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:

(1)本次調(diào)查了   名學(xué)生,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為   度,并補全條形統(tǒng)計圖;

(2)此中學(xué)共有1600名學(xué)生,通過計算預(yù)估其中4部都讀完了的學(xué)生人數(shù);

(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,AB是O的直徑,OD弦BC于點F,交O于點E,連結(jié)CE、AE、CD,若AEC=ODC

(1)求證:直線CD為O的切線;

(2)若AB=5,BC=4,求線段CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“丹棱凍粑”是眉山著名特色小吃,產(chǎn)品暢銷省內(nèi)外,現(xiàn)有一個產(chǎn)品銷售點在經(jīng)銷時發(fā)現(xiàn):如果每箱產(chǎn)品盈利10元,每天可售出50箱;若每箱產(chǎn)品漲價1元,日銷售量將減少2箱.

(1)現(xiàn)該銷售點每天盈利600元,同時又要顧客得到實惠,那么每箱產(chǎn)品應(yīng)漲價多少元?

(2)若該銷售點單純從經(jīng)濟角度考慮,每箱產(chǎn)品應(yīng)漲價多少元才能獲利最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知線段aP為線段a上任意一點,已知圖形M,Q為圖形M上任意一點,當(dāng)P,Q兩點間的距離最小時,將此時PQ的長度稱為圖形M與線段a的近點距;當(dāng)P,Q兩點間的距離最大時,將此時PQ的長度稱為圖形M與線段a的遠點距.

根據(jù)閱讀材料解決下列問題:

如圖1,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣2,﹣2),正方形ABCD的對稱中心為原點O

1)線段AB與線段CD的近點距是   ,遠點距是   

2)如圖2,直線y=﹣x+6x軸,y軸分別交于點E,F,則線段EF和正方形ABCD的近點距是   ,遠點距是   

3)直線yx+bb≠0)與x軸,y軸分別交于點R,S,線段RS與正方形ABCD的近距點是,則b的值是   

4)在平面直角坐標(biāo)系xOy中,有一個矩形GHMN,若此矩形至少有一個頂點在以O為圓心1為半徑的圓上,其余各點可能在圓上或圓內(nèi),將正方形ABCD繞點O旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,它與矩形GHMN的近點距的最小值是  ,遠點距的最大值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖(1),已知△ABC為正三角形,點MBC上一點,點NAC上一點,AM、BN相交于點Q,BM=CN.求出∠BQM的度數(shù)

(2)將(1)中的△ABC”分別改為正方形ABCD、正五邊形ABCDE、…正n邊形ABCD,“NAC上一點改為點NCD上一點,其余條件不變,分別推斷出∠BQM等于多少度,將結(jié)論填入下表:

正多邊形

正方形

正五邊形

……

n邊形

∠BQM的度數(shù)

……

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分,交于點,過點于點.

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案