【題目】(10分)如圖,AB是⊙O的直徑,OD⊥弦BC于點(diǎn)F,交⊙O于點(diǎn)E,連結(jié)CE、AE、CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=5,BC=4,求線段CD的長.
【答案】(1)證明見試題解析;(2).
【解析】
試題(1)利用圓周角定理結(jié)合等腰三角形的性質(zhì)得出∠OCF+∠DCB=90°,即可得出答案;
(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質(zhì)得出DC的長.
試題解析:(1)連接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直線CD為⊙O的切線;
(2)連接AC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)已知:關(guān)于的方程.
(1)求證:方程總有兩個實(shí)數(shù)根;
(2)如果為正整數(shù),且方程的兩個根均為整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.
(1)求甲、乙兩人每天各加工多少個這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是 150 元和 120 元,現(xiàn)有 3000 個這種零件的加工任務(wù),甲單獨(dú)加工一段時間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)不超過 7800 元,那么甲至少加工了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計概率”的實(shí)驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實(shí)驗最有可能的是( 。
A. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點(diǎn)數(shù)是4
C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃
D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn), 以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已如,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為、點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,作直線.點(diǎn)關(guān)于直線的對稱點(diǎn)剛好在軸上,連接.
(1)寫出一點(diǎn)的坐標(biāo),并求出直線對應(yīng)的函數(shù)表達(dá)式;
(2)點(diǎn)在線段上,連接、、,當(dāng)是等腰直角三角形時,求點(diǎn)坐標(biāo);
(3)如圖②,在(2)的條件下,點(diǎn)從點(diǎn)出發(fā)以每秒2個單位長度的速度向原點(diǎn)運(yùn)動,到達(dá)點(diǎn)時停止運(yùn)動,連接,過作的垂線,交軸于點(diǎn),問點(diǎn)運(yùn)動幾秒時是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,點(diǎn)E是邊AD上動點(diǎn),點(diǎn)F是邊BC上動點(diǎn),連接EF,把矩形ABCD沿直線EF折疊,點(diǎn)B恰好落在邊AD上,記為點(diǎn)G;如圖2,把矩形展開鋪平,連接BE,FG.
(1)判斷四邊形BEGF的形狀一定是 ,請證明你的結(jié)論;
(2)若矩形邊AB=4,BC=8,直接寫出四邊形BEGF面積的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+6于A、B兩點(diǎn),若反比例函數(shù)(x>0)的圖象與△ABC有公共點(diǎn),則k的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(4,0),以點(diǎn)A為圓心,4為半徑的圓與x軸交于O,B兩點(diǎn),OC為弦,∠AOC=60°,P是x軸上的一動點(diǎn),連接CP.
(1)直接寫出OC=___________;
(2)如圖1,當(dāng)CP與⊙A相切時,求PO的長;
(3)如圖2,當(dāng)點(diǎn)P在直徑OB上時,CP的延長線與⊙A相交于點(diǎn)Q,問當(dāng)PO為何值時,△OCQ是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com