已知:如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問(wèn)題:
(1)在圖1中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)__________;
(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù):__________個(gè);
(3)在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.利用(1)的結(jié)論,試求∠P的度數(shù);
(4)如果圖2中∠D和∠B為任意角時(shí),其他條件不變,試問(wèn)∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.(直接寫(xiě)出結(jié)論即可)
【考點(diǎn)】三角形內(nèi)角和定理.
【專題】探究型.
【分析】(1)利用三角形的內(nèi)角和定理表示出∠AOD與∠BOC,再根據(jù)對(duì)頂角相等可得∠AOD=∠BOC,然后整理即可得解;
(2)根據(jù)“8字形”的結(jié)構(gòu)特點(diǎn),根據(jù)交點(diǎn)寫(xiě)出“8字形”的三角形,然后確定即可;
(3)根據(jù)(1)的關(guān)系式求出∠OCB﹣∠OAD,再根據(jù)角平分線的定義求出∠DAM﹣∠PCM,然后利用“8字形”的關(guān)系式列式整理即可得解;
(4)根據(jù)“8字形”用∠B、∠D表示出∠OCB﹣∠OAD,再用∠D、∠P表示出∠DAM﹣∠PCM,然后根據(jù)角平分線的定義可得∠DAM﹣∠PCM=(∠OCB﹣∠OAD),然后整理即可得證.
【解答】解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,
在△BOC中,∠BOC=180°﹣∠B﹣∠C,
∵∠AOD=∠BOC(對(duì)頂角相等),
∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,
∴∠A+∠D=∠B+∠C;
(2)交點(diǎn)有點(diǎn)M、O、N,
以M為交點(diǎn)有1個(gè),為△AMD與△CMP,
以O(shè)為交點(diǎn)有4個(gè),為△AOD與△COB,△AOM與△CON,△AOM與△COB,△CON與△AOD,
以N為交點(diǎn)有1個(gè),為△ANP與△CNB,
所以,“8字形”圖形共有6個(gè);
(3)∵∠D=40°,∠B=36°,
∴∠OAD+40°=∠OCB+36°,
∴∠OCB﹣∠OAD=4°,
∵AP、CP分別是∠DAB和∠BCD的角平分線,
∴∠DAM=∠OAD,∠PCM=∠OCB,
又∵∠DAM+∠D=∠PCM+∠P,
∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;
(4)根據(jù)“8字形”數(shù)量關(guān)系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,
∵AP、CP分別是∠DAB和∠BCD的角平分線,
∴∠DAM=∠OAD,∠PCM=∠OCB,
∴(∠D﹣∠B)=∠D﹣∠P,
整理得,2∠P=∠B+∠D.
【點(diǎn)評(píng)】本題考查了三角形內(nèi)角和定理,角平分線的定義,多邊形的內(nèi)角和定理,對(duì)頂角相等的性質(zhì),整體思想的利用是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某物流公司的快遞車和貨車同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達(dá)乙地后缷完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時(shí),兩車之間的距離y(千米)與貨車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個(gè)結(jié)論:
①快遞車從甲地到乙地的速度為100千米/時(shí);
②甲、乙兩地之間的距離為120千米;
③圖中點(diǎn)B的坐標(biāo)為(3,75);
④快遞車從乙地返回時(shí)的速度為90千米/時(shí),
以上4個(gè)結(jié)論正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)三角形的兩邊長(zhǎng)為3和8,第三邊長(zhǎng)為奇數(shù),則第三邊長(zhǎng)為( )
A.5或7 B.7或9 C.7 D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,把Rt△ABC(∠C=90°)折疊,使A、B兩點(diǎn)重合,得到折痕ED,再沿BE折疊,C點(diǎn)恰好與D點(diǎn)重合,則∠A等于__________度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com