【題目】有3個有理數(shù)x、y、z,若且x與y互為相反數(shù),y與z互為倒數(shù).
(1)當n為奇數(shù)時,你能求出x、y、z這三個數(shù)嗎?當n為偶數(shù)時,你能求出x、y、z這三個數(shù)嗎?能,請計算并寫出結(jié)果;不能,請說明理由.
(2)根據(jù)(1)的結(jié)果計算:xy﹣yn﹣(y﹣z)2011的值.
【答案】(1)當n為奇數(shù)時,x=﹣1;y=1;z=1.當n為偶數(shù)時,不能求出x、y、z這三個數(shù).理由見解析(2)-2
【解析】試題分析:(1)分n為奇數(shù),n為偶數(shù)兩種情況求出x、y、z這三個數(shù).
(2)將x=﹣1,y=1,z=1的值代入計算即可.
解:(1)當n為奇數(shù)時,==﹣1.
∵x與y互為相反數(shù),
∴y=﹣x=1,
∵y與z為倒數(shù),
∴,
∴x=﹣1;y=1;z=1.
當n為偶數(shù)時,(﹣1)n﹣1=1﹣1=0,
∵分母不能為零,
∴不能求出x、y、z這三個數(shù).
(2)當x=﹣1,y=1,z=1時,
xy﹣yn﹣(y﹣z)2011,
=(﹣1)×1﹣1n﹣(1﹣1)2011,
=﹣2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,﹣1)和C(4,5)三點.
(1)求二次函數(shù)的解析式;
(2)設二次函數(shù)的圖象與x軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線y=x+1,并寫出當x在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中有兩點M(a,b),N(c,d),規(guī)定(a,b)⊕(c,d)=(a+c,b+d),則稱點Q(a+c,b+d)為M,N的“和點”.若以坐標原點O與任意兩點及它們的“和點”為頂點能構(gòu)成四邊形,則稱這個四邊形為“和點四邊形”,現(xiàn)有點A(2,5),B(﹣1,3),若以O,A,B,C四點為頂點的四邊形是“和點四邊形”,則點C的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①負數(shù)沒有立方根,②一個實數(shù)的立方根不是正數(shù)就是負數(shù),③一個正數(shù)或負數(shù)的立方根與這個數(shù)的符號一致,④如果一個數(shù)的立方根等于它本身,那么它一定是1或0.其中正確的是( )
A、1 B、2 C、3 D、4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)
(1) 填空:
(a-b)(a+b)=________;
(a-b)(a2+ab+b2)=________;
(a-b)(a3+a2b+ab2+b3)=________.
(2) 猜想:
(a-b)(an-1+an-2b+…+abn-2+bn-1)=________ (其中n為正整數(shù),且n≥2).
(3) 利用(2)猜想的結(jié)論計算: 29-28+27-…+23-22+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)國家發(fā)改委實施“階梯電價”的有關(guān)文件要求,某市結(jié)合地方實際,決定從2015年5月1日起對居民生活用電實施“階梯電價”收費,具體收費標準見下表:
一戶居民一個月用電量的范圍 電費價格(單位:元/千瓦時)
不超過150千瓦時的部分 a
超過150千瓦時,但不超過300千瓦時的部分 b
超過300千瓦時的部分 a+0.3
2015年5月份,該市居民甲用電100千瓦時,交費60元;居民乙用電200千瓦時,交費122.5元.
(1)求上表中a、b的值.
(2)實施“階梯電價”收費以后,該市一戶居民月用電多少千瓦時,其當月交費277.5元?
(3)實施“階梯電價”收費以后,該市一戶居民月用電多少千瓦時,其當月的平均電價等于0.62元/千瓦時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賽季甲、乙兩名籃球運動員12場比賽得分情況用圖表示如下:對這兩名運動員的成績進行比較,下列四個結(jié)論中,不正確的是( )
A.甲運動員得分的極差大于乙運動員得分的極差
B.甲運動員得分的中位數(shù)小于乙運動員得分的中位數(shù)
C.甲運動員的得分平均數(shù)大于乙運動員的得分平均數(shù)
D.乙運動員的成績比甲運動員的成績穩(wěn)定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com