如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來(lái)證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
①AE=EF是否總成立?請(qǐng)給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在拋物線y=-x2+x+1上,求此時(shí)點(diǎn)F的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(為常數(shù),且)與軸從左至右依次交于A,B兩點(diǎn),與軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線與拋物線的另一交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為-5,求拋物線的函數(shù)表達(dá)式;
(2)若在第一象限的拋物線上有點(diǎn)P,使得以A,B,P為頂點(diǎn)的三角形與△ABC相似,求的值;
(3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止. 當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如果一條拋物線與軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是 三角形;
(2)如圖,△OAB是拋物線的“拋物線三角形”,是否存在以原點(diǎn)O為對(duì)稱中心的矩形ABCD?若存在,求出過(guò)O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說(shuō)明理由;
(3)在(2)的條件下,若以點(diǎn)E為圓心,r為半徑的圓與線段AD只有一個(gè)公共點(diǎn),求出r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經(jīng)過(guò)A、C兩點(diǎn).
(1)求拋物線的解析式及其頂點(diǎn)坐標(biāo);
(2)如圖①,點(diǎn)P是拋物線上位于x軸下方的一點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于拋物線的對(duì)稱軸對(duì)稱,過(guò)點(diǎn)P、Q分別向x軸作垂線,垂足為點(diǎn)D、E,記矩形DPQE的周長(zhǎng)為d,求d的最大值,并求出使d最大值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)M是拋物線上位于直線AC下方的一點(diǎn),過(guò)點(diǎn)M作MF⊥AC于點(diǎn)F,連接MC,作MN∥BC交直線AC于點(diǎn)N,若MN將△MFC的面積分成2:3兩部分,請(qǐng)確定M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)y =ax²(a≠0)與直線y =2x-3的圖像交于點(diǎn)(1,b).
求:(1)a和b的值;
(2)求拋物線y =ax²的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某經(jīng)銷商代理銷售一種手機(jī),按協(xié)議,每賣出一部手機(jī)需另交品牌代理費(fèi)100元,已知該種手機(jī)每部進(jìn)價(jià)800元,銷售單價(jià)為1200元時(shí),每月能賣出100部,市場(chǎng)調(diào)查發(fā)現(xiàn),若每部手機(jī)每讓利50元,則每月可多售出40部.
(1)若每月要獲取36000元利潤(rùn),求讓利價(jià)
(利潤(rùn)=銷售收入-進(jìn)貨成本-品牌代理費(fèi))
(2)設(shè)讓利x元,月利潤(rùn)為y元,寫出y與x的函數(shù)關(guān)系式,并求讓利多少元時(shí),月利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”,已知點(diǎn)C的坐標(biāo)為(0,-),點(diǎn)M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限內(nèi)是否存在一點(diǎn)P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)∆BDM為直角三角形時(shí),請(qǐng)直接寫出m的值.(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)間的距離為MN=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
△ABC是銳角三角形,BC=6,面積為12.點(diǎn)P在AB上,點(diǎn)Q在AC上.如圖9-33,正方形PQRS(RS與A在PQ的異側(cè))的邊長(zhǎng)為x,正方形PQRS與△ABC的公共部分的面積為y.
(1)當(dāng)RS落在BC上時(shí),求x;
(2)當(dāng)RS不落在BC上時(shí),求y與x的函數(shù)關(guān)系式;
(3)求公共部分面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知在平面直角坐標(biāo)系中,四邊形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,動(dòng)點(diǎn)P從點(diǎn)O以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)B沿B→C→O的線路以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t(秒).
(1)求點(diǎn)C的坐標(biāo)及梯形ABCO的面積;
(2)當(dāng)點(diǎn)Q在CO邊上運(yùn)動(dòng)時(shí),求△OPQ的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)以O(shè),P,Q為頂點(diǎn)的三角形能構(gòu)成直角三角形嗎?若能,請(qǐng)求出t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com