【題目】如圖,在矩形ABCD中,AD= AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正確的有( )
A.2個
B.3個
C.4個
D.5個
【答案】C
【解析】∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE= AB,
∵AD= AB,
∴AE=AD,
在△ABE和△AHD中,
,
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED= (180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正確;
∵AB=AH,
∵∠AHB= (180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),
∴∠OHE=67.5°=∠AED,
∴OE=OH,
∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠DHO=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正確;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
在△BEH和△HDF中,
,
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正確;
∵HE=AE﹣AH=BC﹣CD,
∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正確;
∵AB=AH,∠BAE=45°,
∴△ABH不是等邊三角形,
∴AB≠BH,
∴即AB≠HF,故⑤錯誤;
綜上所述,結論正確的是①②③④共4個.
所以答案是:C.
【考點精析】根據題目的已知條件,利用角平分線的性質定理和矩形的性質的相關知識可以得到問題的答案,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;矩形的四個角都是直角,矩形的對角線相等.
科目:初中數學 來源: 題型:
【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經過的路程相等,設BD為xm.
(1)請用含有x的整式表示線段AD的長為______m;
(2)求這棵樹高有多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的弦,D為OA半徑的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數;
(3)如果BE=10,sinA= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(1,0),C(3,0),D(3,4).以A為頂點的拋物線y=ax2+bx+c過點C.動點P從點A出發(fā),沿線段AB向點B運動.同時動點Q從點C出發(fā),沿線段CD向點D運動.點P,Q的運動速度均為每秒1個單位.運動時間為t秒.過點P作PE⊥AB交AC于點E.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)過點E作EF⊥AD于F,交拋物線于點G,當t為何值時,△ACG的面積最大?最大值為多少?
(3)在動點P,Q運動的過程中,當t為何值時,在矩形ABCD內(包括邊界)存在點H,使以C,Q,E,H為頂點的四邊形為菱形?請直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB=90°,點A繞點O順時針旋轉后的對應點A1落在射線OB上,點A繞點A1順時針旋轉后的對應點A2落在射線OB上,點A繞點A2順時針旋轉后的對應點A3落在射線OB上,…,連接AA1 , AA2 , AA3…,依此作法,則∠AAnAn+1等于度.(用含n的代數式表示,n為正整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家推行“節(jié)能減排,低碳經濟”政策后,低排量的汽車比較暢銷,某汽車經銷商購進A,B兩種型號的低排量汽車,其中A型汽車的進貨單價比B型汽車的進貨單價多2萬元花50萬元購進A型汽車的數量與花40萬元購進B型汽車的數量相同,銷售中發(fā)現A型汽車的每周銷量yA(臺)與售價x(萬元/臺)滿足函數關系式y(tǒng)A=﹣x+20,B型汽車的每周銷量yB(臺)與售價x(萬元/臺)滿足函數關系式y(tǒng)B=﹣x+14.
(1)求A、B兩種型號的汽車的進貨單價;
(2)已知A型汽車的售價比B型汽車的售價高2萬元/臺,設B型汽車售價為t萬元/臺.每周銷售這兩種車的總利潤為W萬元,求W與t的函數關系式,A、B兩種型號的汽車售價各為多少時,每周銷售這兩種車的總利潤最大?最大總利潤是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年西寧市高中招生體育考試測試管理系統(tǒng)的運行,將測試完進行換算統(tǒng)分改為計算機自動生成,現場公布成績,降低了誤差,提高了透明度,保證了公平.考前張老師為了解全市初三男生考試項目的選擇情況(每人限選一項),對全市部分初三男生進行了調查,將調查結果分成五類:A、實心球(2kg);B、立定跳遠;C、50米跑;D、半場運球;E、其它.并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)假定全市初三畢業(yè)學生中有5500名男生,試估計全市初三男生中選50米跑的人數有多少人?
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B、立定跳遠;C、50米跑;D、半場運球中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結果.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com