【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設(shè)BDxm

1)請(qǐng)用含有x整式表示線段AD的長(zhǎng)為______m;

2)求這棵樹高有多少米?

【答案】115-x;(2) 7.5.

【解析】試題分析: x,且存在BD+DA=BC+CA

BD+DA=15,DA=15x.

已知,要求即可,兩只猴子經(jīng)過路程相等的等量關(guān)系,即 根據(jù)此等量關(guān)系列出方程即可求解.

試題解析: BDx,且存在BD+DA=BC+CA,

中,AD為斜邊,

解得米,

故樹高米,

答:

樹高為7.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=120°AB=AC=4,ADBCBD=2,延長(zhǎng)ADE,使AE=2AD,連接BE

1)求證:ABE為等邊三角形;

2)將一塊含60°角的直角三角板PMN如圖放置,其中點(diǎn)P與點(diǎn)E重合,且∠NEM=60°,邊NEAB交于點(diǎn)G,邊MEAC交于點(diǎn)F.求證:BG=AF;

3)在(2)的條件下,求四邊形AGEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在, 于點(diǎn), 于點(diǎn), 邊的中點(diǎn),連接、,則下列結(jié)論:;為等邊三角形.下面判斷正確是( )

A. ①正確 B. ②正確

C. ①②都正確 D. ①②都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒4cm的速度沿折線A-C-B-A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

(1)若點(diǎn)PAC上,且滿足PA=PB時(shí),求出此時(shí)t的值;

(2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;

(3)在運(yùn)動(dòng)過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為等腰直角三角形,D為斜邊AB上任意一點(diǎn),(不與點(diǎn)A、B重合),連接CD,作ECDC,且EC=DC,連接AE,則∠EAC_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AD平分∠CAE,AD∥BC.

(1)求證:△ABC是等腰三角形.

(2)當(dāng)∠CAE等于多少度時(shí)△ABC是等邊三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),當(dāng)OA⊥OB時(shí),直線AB恒過一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案