【題目】(2016湖北襄陽第25題)
如圖,已知點A的坐標為(-2,0),直線y=-+3與x軸,y軸分別交于點B和點C,連接AC,頂點為D的拋物線y=ax2+bx+c過A,B,C三點.
(1)請直接寫出B,C兩點的坐標,拋物線的解析式及頂點D的坐標;
(2)設拋物線的對稱軸DE交線段BC于點E,P為第一象限內(nèi)拋物線上一點,過點P作x軸的垂線,交線段BC于點F若四邊形DEFP為平行四邊形,求點P的坐標;
(3)設點M是線段BC上的一動點,過點M作MN∥AB,交AC于點N點.Q從點B出發(fā),以每秒l個單位長度的速度沿線段BA向點A運動,運動時間為t(秒).當t(秒)為何值時,存在QMN為等腰直角三角形?
【答案】(1)(1)B(4,O),C(0,3),拋物線的解析式為頂點D的坐標為;(2)當點P坐標為(3,)時,四邊形DEFP為平行四邊形;(3)當t為或或時,存在△QMN為等腰直角三角形.
【解析】
試題分析:(1)由直線y=-+3的解析式即可得B,C兩點的坐標,再用待定系數(shù)法即可求得拋物線的解析式,根據(jù)拋物線的解析式即可得拋物線的解析式;(2)設點P坐標為則點F的坐標為(m,-m+3),根據(jù)四邊形DEFP為平行四邊形,則PF=DE,由此列方程求得m的值,即可得點P的坐標;(3)分別以點M、N、Q為直角頂點討論解決即可.
試題解析:(1)B(4,O),C(0,3).
拋物線的解析式為
頂點D的坐標為
(2)把x=1代入
因點P為第一象限內(nèi)拋物線上一點,所以可設點P坐標為
點F的坐標為(m,-m+3).若四邊形DEFP為平行四邊形,則PF=DE
即-m2+m+3-(-m+3)=
解之,得m1=3,m2=1(不合題意,舍去).
∴當點P坐標為(3,)時,四邊形DEFP為平行四邊形.
(3)設點M的坐標為(n,-),MN交y軸于點G.
∽BAC
①當∠Q1MN=90°,MN=MQ2=OG時,解之,MN=2.
解之,
②當時,容易求出
③當∠MQ3N=90°,Q3M=Q3N時,NM=Q3K=OG
解之,得MN=3.
解之,得n=2,即
MN的中點K的坐標為即
∴當t為或或時,存在△QMN為等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們生活水平的提高,家用轎車越來越多地進入家庭,小明家中買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如下表),以50 km為標準,多于50 km的記為“+”,不足50 km的記為“-”,剛好50 km的記為“0”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程(km) | -8 | -11 | -14 | 0 | -16 | +41 | +8 |
(1)請求出這七天中平均每天行駛多少千米?
(2)若每天行駛100 km需用汽油6升,汽油價6.2元/升,請估計小明家一個月(按30天計)的汽油費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1的坐標為(1,0),A2在y軸的正半軸上,且∠A1A2O=30°,過點A2作A2A3⊥A1A2,垂足為A2,交x軸于點A3;過點A3作A3A4⊥A2A3,垂足為A3,交y軸于點A4;過點A4作A4A5⊥A3A4,垂足為A4,交x軸于點A5;過點A5作A5A6⊥A4A5,垂足為A5,交y軸于點A6;…按此規(guī)律進行下去,則點A2016的縱坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣3,0)、B(5,0)、C(0,5)三點,O為坐標原點
(1)求此拋物線的解析式;
(2)若把拋物線y=ax2+bx+c(a≠0)向下平移個單位長度,再向右平移n(n>0)個單位長度得到新拋物線,若新拋物線的頂點M在△ABC內(nèi),求n的取值范圍;
(3)設點P在y軸上,且滿足∠OPA+∠OCA=∠CBA,求CP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把拋物線y=2x2先向左平移3個單位,再向上平移4個單位,所得拋物線的函數(shù)表達式為( )
A.y=2(x+3)2+4
B.y=2(x+3)2﹣4
C.y=2(x﹣3)2﹣4
D.y=2(x﹣3)2+4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線y=2x2的圖象先向右平移2個單位,再向上平移3個單位后,得到的拋物線的解析式是( )
A.y=2(x﹣2)2﹣3
B.y=2(x﹣2)2+3
C.y=2(x+2)2﹣3
D.y=2(x+2)2+3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com