精英家教網 > 初中數學 > 題目詳情

已知二次函數數學公式
(1)求它的對稱軸與x軸交點D的坐標;
(2)將該拋物線沿它的對稱軸向上平移,如圖所示,設平移后的拋物線的頂點為M,與x軸、y軸的交點分別為A、B、C三點,連接AC、BC,若∠ACB=90°.
①求此時拋物線的解析式;
②以AB為直徑作圓,試判斷直線CM與此圓的位置關系,并說明理由.

解:(1)由,

∴D(3,0);

(2)方法一:
①如圖1,設平移后的拋物線的解析式為
則C(0,k)OC=k,
令y=0即,
,
∴A,B,
,
=2k2+8k+36,
∵AC2+BC2=AB2
即:2k2+8k+36=16k+36,
得k1=4,k2=0(舍去),
∴拋物線的解析式為,…
方法二:
①∵,∴頂點坐標
設拋物線向上平移h個單位,則得到C(0,h),頂點坐標,
∴平移后的拋物線:,
當y=0時,,得x1=3-,x2=3+,
∴A,B
∵∠ACB=90°∴△AOC∽△COB,
∴OC2=OA•OB得h1=4,h2=0(不合題意舍去),
∴平移后的拋物線:;

(3)方法一:
②如圖2,由拋物線的解析式可得,
A(-2,0),B(8,0),C(0,4),M
過C、M作直線,連接CD,過M作MH垂直y軸于H,則MH=3,

∴DM2=CM2+CD2
∴△CDM是直角三角形,∴CD⊥CM,
∴直線CM與⊙D相切.

方法二:
②如圖3,由拋物線的解析式可得A(-2,0),B(8,0),C(0,4),M,
作直線CM,過D作DE⊥CM于E,過M作MH垂直y軸于H,則MH=3,,由勾股定理得,
∵DM∥OC,
∴∠MCH=∠EMD,
∴Rt△CMH∽Rt△DME,
得DE=5,
由(2)知AB=10,∴⊙D的半徑為5.
∴直線CM與⊙D相切.
分析:(1)根據對稱軸公式求出x=-,求出即可;:(1)由,
,
∴D(3,0);
(2)①假設出平移后的解析式即可得出圖象與x軸的交點坐標,再利用勾股定理求出即可;②由拋物線的解析式可得,A,B,C,M各點的坐標,再利用勾股定理逆定理求出CD⊥CM,即可證明.
點評:此題主要考查了二次函數的綜合應用以及勾股定理以及逆定理的應用,利用數形結合得出是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知二次函數y=-x2+bx+c的圖象過點A(1,2),B(3,2),C(0,-1),D(2,3).點P(x1,y1),Q(x2,y2)也在該函數的圖象上,當0<x1<1,2<x2<3時,y1與y2的大小關系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數的圖象經過點(0,3),頂點坐標為(1,4),
(1)求這個二次函數的解析式;
(2)求圖象與x軸交點A、B兩點的坐標;
(3)圖象與y軸交點為點C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•莒南縣二模)已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數).
其中正確的結論有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①ac>0;②a-b+c<0;
③當x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于-1的實數根;⑤2a+b=0.其中,正確的說法有
②④⑤
②④⑤
.(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,已知A點坐標為(-1,0),且對稱軸為直線x=2,則B點坐標為
(5,0)
(5,0)

查看答案和解析>>

同步練習冊答案