【題目】如圖,在RtABC中,∠BAC=90°,DE分別是AB、BC的中點,FCA延長線上,∠FDA=B,AC=3,AB=4,則四邊形AEDF的周長為(

A.8B.9C.10D.11

【答案】A

【解析】

根據(jù)勾股定理先求出BC的長,再根據(jù)三角形中位線定理和直角三角形的性質求出DEAE的長,進而由已知可判定四邊形AEDF是平行四邊形,從而求得其周長.

解:在RtABC中,∵AC=3,AB=4
BC=5,
EBC的中點,
AE=BE=2.5,
∴∠BAE=B
∵∠FDA=B,
∴∠FDA=BAE,
DFAE
D、E分別是AB、BC的中點,
DEAC,DE=AC=1.5
∴四邊形AEDF是平行四邊形,
∴四邊形AEDF的周長=2×1.5+2.5=8
故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸于點,,交軸的負半軸于,頂點為.下列結論:①;②;③當時,;④當是等腰直角三角形時,則;⑤若,是一元二次方程的兩個根,且,則.其中錯誤的有( )個.

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【題目】如圖①,一次函數(shù) y x - 2 的圖像交 x 軸于點 A,交 y 軸于點 B,二次函數(shù) y x2 bx c的圖像經(jīng)過 A、B 兩點,與 x 軸交于另一點 C

(1)求二次函數(shù)的關系式及點 C 的坐標;

(2)如圖②,若點 P 是直線 AB 上方的拋物線上一點,過點 P PDx 軸交 AB 于點 DPEy 軸交 AB 于點 E,求 PDPE 的最大值;

(3)如圖③,若點 M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點 M的坐標.

① ②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE∠BAC的平分線,∠ABC的平分線 BMAE于點M,點OAB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交 AB于點F

1)求證:AE⊙O的切線.

2)當BC=8AC=12時,求⊙O的半徑.

3)在(2)的條件下,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y12x2與雙曲線y2交于A、C兩點,ABOAx軸于點B,且ABOA

1)求雙曲線的解析式;

2)連接OC,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD,AB=6AD=10,請用直尺和圓規(guī)按下列步驟作圖(不要求寫作法,但要保留作圖痕跡);

1)在BC邊上作出點E,使得cosBAE

2)在(1)作出的圖形中

①在CD上作出一點F,使得點D、E關于AF對稱;

②四邊形AEFD的面積=____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)在“精準扶貧”活動中銷售農(nóng)產(chǎn)品,經(jīng)分析發(fā)現(xiàn)月銷售量(萬件與月份()的關系為:

每件產(chǎn)品的利潤 ()與月份()的關系如下表:

1

2

3

4

5

6

7

8

9

10

11

12

19

18

17

16

15

14

13

12

11

10

10

10

請你根據(jù)表格直接寫出每件產(chǎn)品利潤z () 與月份()的函數(shù)關系式;

若月利潤(萬元) =當月銷售量(萬件) 當月每件產(chǎn)品的利潤(),求月利潤(萬元)與月份()的關系式;

為何值時,月利潤有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數(shù)有 人;

(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;

(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)y2=(m<0)圖象的兩個交點,AC⊥x軸于C.

(1)求出k,bm的值.

(2)根據(jù)圖象直接回答:在第二象限內(nèi),當y1>y2時,x的取值范圍是 ________.

(3)P是線段AB上的一點,連接PC,若△PCA的面積等于,求點P坐標.

查看答案和解析>>

同步練習冊答案