【題目】拋物線交軸于點,,交軸的負半軸于,頂點為.下列結論:①;②;③當時,;④當是等腰直角三角形時,則;⑤若,是一元二次方程的兩個根,且,則.其中錯誤的有( )個.
A.5B.4C.3D.2
【答案】B
【解析】
根據二次函數圖象與系數的關系,可知,故,①正確;將A、B兩點代入可得c、b的關系,可判定②;函數開口向上,時取得最小值,則,可判斷,故③不正確;根據圖象,頂點坐標,判斷;根據題意,二次函數化為交點式是,令y=4,結合圖像可知,,可以判斷⑤.
①:根據二次函數圖象與系數的關系,可知, ,故①正確;
二次函數與x軸交于點、.即得二次函數的對稱軸為,即,
,.
又.
,.
,.
.
故錯誤;
拋物線開口向上,對稱軸是.
時,二次函數有最小值.
時,.
即.
故不正確;
,,若是等腰直角三角形.
.
解得,.
設點D坐標為.
則.
解得.
點D在x軸下方.
點D為.
二次函數的頂點D為,過點.
設二次函數解析式為.
.
解得.
故不正確;
⑤:根據題意,二次函數化為交點式是,令y=4,結合圖像可知,,也即一元二次方程的兩個根,故⑤不正確.
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖所示,線段AC是⊙O的直徑,過A點作直線BF交⊙O于A、B兩點,過A點作∠FAC的角平分線交⊙O于D,過D作AF的垂線交AF于E.
(1)證明DE是⊙O的切線;
(2)證明AD2=2AEOA;
(3)若⊙O的直徑為10,DE+AE=4,求AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB為邊,在△OAB
外作等邊△OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與軸交于點,軸交于點,拋物線經過,兩點,與軸的另一交點為.
(1)求拋物線的解析式;
(2)為拋物線上一點,直線與軸交于點,當時,求點的坐標;
(3)在直線下方的拋物線上是否存在點,使得,如果存在這樣的點,請求出點的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.請判斷沉船C是否在“蛟龍”號深潛極限范圍內?并說明理由;(精確到0.01)(參考數據:≈1.414,≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】建造一個面積為130m2的長方形養(yǎng)雞場,雞場的一邊靠墻,墻長為a米,另三邊用竹籬笆圍成,如果籬笆總長為33米.
(1)求養(yǎng)雞場的長與寬各為多少米?
(2)若10≤a<18,題中的解的情況如何?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D、E分別是AB、BC的中點,F在CA延長線上,∠FDA=∠B,AC=3,AB=4,則四邊形AEDF的周長為( )
A.8B.9C.10D.11
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com